Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(3): e4903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358137

RESUMO

The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.


Assuntos
Escherichia coli , Óxidos de Nitrogênio , Proteínas , Humanos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Escherichia coli/genética , Escherichia coli/química , Células HeLa , Marcadores de Spin , Proteínas/química
2.
Angew Chem Int Ed Engl ; 63(9): e202317337, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38193258

RESUMO

We evaluate the overall sensitivity gains provided by a series of eighteen nitroxide biradicals for dynamic nuclear polarization (DNP) solid-state NMR at 9.4 T and 100 K, including eight new biradicals. We find that in the best performing group the factors contributing to the overall sensitivity gains, namely the DNP enhancement, the build-up time, and the contribution factor, often compete with each other leading to very similar overall sensitivity across a range of biradicals. NaphPol and HydroPol are found to provide the best overall sensitivity factors, in organic and aqueous solvents respectively. One of the new biradicals, AMUPolCbm, provides high sensitivity for all three solvent formulations measured here, and can be considered to be a "universal" polarizing agent.

3.
Commun Chem ; 6(1): 171, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607991

RESUMO

Dynamic nuclear polarisation (DNP) is a process that transfers electron spin polarisation to nuclei by applying resonant microwave radiation, and has been widely used to improve the sensitivity of nuclear magnetic resonance (NMR). Here we demonstrate new levels of performance for static cross-effect proton DNP using high peak power chirped inversion pulses at 94 GHz to create a strong polarisation gradient across the inhomogeneously broadened line of the mono-radical 4-amino TEMPO. Enhancements of up to 340 are achieved at an average power of a few hundred mW, with fast build-up times (3 s). Experiments are performed using a home-built wideband kW pulsed electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz, integrated with an NMR detection system. Simultaneous DNP and EPR characterisation of other mono-radicals and biradicals, as a function of temperature, leads to additional insights into limiting relaxation mechanisms and give further motivation for the development of wideband pulsed amplifiers for DNP at higher frequencies.

4.
J Am Chem Soc ; 145(27): 14874-14883, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366803

RESUMO

Low sensitivity is the primary limitation to extending nuclear magnetic resonance (NMR) techniques to more advanced chemical and structural studies. Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an NMR hyperpolarization technique where light is used to excite a suitable donor-acceptor system, creating a spin-correlated radical pair whose evolution drives nuclear hyperpolarization. Systems that exhibit photo-CIDNP in solids are not common, and this effect has, up to now, only been observed for 13C and 15N nuclei. However, the low gyromagnetic ratio and natural abundance of these nuclei trap the local hyperpolarization in the vicinity of the chromophore and limit the utility for bulk hyperpolarization. Here, we report the first example of optically enhanced solid-state 1H NMR spectroscopy in the high-field regime. This is achieved via photo-CIDNP of a donor-chromophore-acceptor molecule in a frozen solution at 0.3 T and 85 K, where spontaneous spin diffusion among the abundant strongly coupled 1H nuclei relays polarization through the whole sample, yielding a 16-fold bulk 1H signal enhancement under continuous laser irradiation at 450 nm. These findings enable a new strategy for hyperpolarized NMR beyond the current limits of conventional microwave-driven DNP.

5.
Chem Sci ; 14(23): 6120-6148, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325158

RESUMO

Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.

6.
J Med Chem ; 66(13): 8844-8857, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37339060

RESUMO

Here we report the coupling of a cyclic peptide (VH4127) targeting the low density lipoprotein (LDL) receptor (LDLR) noncompetitively to cucurbit[7]uril (CB[7]) to develop a new kind of drug delivery system (DDS), namely, CB[7]-VH4127, with maintained binding affinity to the LDLR. To evaluate the uptake potential of this bismacrocyclic compound, another conjugate was prepared comprising a high-affinity group for CB[7] (adamantyl(Ada)-amine) coupled to the fluorescent tracker Alexa680 (A680). The resulting A680-Ada·CB[7]-VH4127 supramolecular complex demonstrated conserved LDLR-binding potential and improved LDLR-mediated endocytosis and intracellular accumulation potential in LDLR-expressing cells. The combination of two technologies, namely, monofunctionalized CB[7] and the VH4127 LDLR-targeting peptide, opens new avenues in terms of targeting and intracellular delivery to LDLR-expressing tissues or tumors. The versatile transport capacity of CB[7], known to bind a large spectrum of bioactive or functional compounds, makes this new DDS suitable for a wide range of therapeutic or imaging applications.


Assuntos
Compostos Macrocíclicos , Peptídeos , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Sistemas de Liberação de Medicamentos , Peptídeos/química , Receptores de LDL/metabolismo
7.
Angew Chem Int Ed Engl ; 62(31): e202304844, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222433

RESUMO

The sensitivity of NMR spectroscopy is considerably enhanced by dynamic nuclear polarization (DNP). In DNP polarization is transferred from unpaired electrons of a polarizing agent to nearby proton spins. In solids, this transfer is followed by the transport of hyperpolarization to the bulk via 1 H-1 H spin diffusion. The efficiency of these steps is critical to obtain high sensitivity gains, but the pathways for polarization transfer in the region near the unpaired electron spins are unclear. Here we report a series of seven deuterated and one fluorinated TEKPol biradicals to probe the effect of deprotonation on MAS DNP at 9.4 T. The experimental results are interpreted with numerical simulations, and our findings support that strong hyperfine couplings to nearby protons determine high transfer rates across the spin diffusion barrier to achieve short build-up times and high enhancements. Specifically, 1 H DNP build-up times increase substantially with TEKPol isotopologues that have fewer hydrogen atoms in the phenyl rings, suggesting that these protons play a crucial role transferring the polarization to the bulk. Based on this new understanding, we have designed a new biradical, NaphPol, which yields significantly increased NMR sensitivity, making it the best performing DNP polarizing agent in organic solvents to date.

8.
Chemistry ; 28(66): e202202249, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36202758

RESUMO

One of the greatest current challenges in structural biology is to study protein dynamics over a wide range of timescales in complex environments, such as the cell. Among magnetic resonances suitable for this approach, electron paramagnetic resonance spectroscopy coupled to site-directed spin labeling (SDSL-EPR) has emerged as a promising tool to study protein local dynamics and conformational ensembles. In this work, we exploit the sensitivity of nitroxide labels to report protein local dynamics at room temperature. We demonstrate that such studies can be performed while preserving both the integrity of the cells and the activity of the protein under investigation. Using this approach, we studied the structural dynamics of the chaperone NarJ in its natural host, Escherichia coli. We established that spin-labeled NarJ is active inside the cell. We showed that the cellular medium affects NarJ structural dynamics in a site-specific way, while the structural flexibility of the protein is maintained. Finally, we present and discuss data on the time-resolved dynamics of NarJ in cellular context.


Assuntos
Chaperonas Moleculares , Óxidos de Nitrogênio , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Marcadores de Spin , Óxidos de Nitrogênio/química , Chaperonas Moleculares/química
9.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144606

RESUMO

BACKGROUND: Mito-metformin10 (MM10), synthesized by attaching a triphenylphosphonium cationic moiety via a 10-carbon aliphatic side chain to metformin, is a mitochondria-targeted analog of metformin that was recently demonstrated to alter mitochondrial function and proliferation in pancreatic ductal adenocarcinoma. Here, we hypothesized that this compound may decrease the oxygen consumption rate (OCR) in prostate cancer cells, increase the level of mitochondrial ROS, alleviate tumor hypoxia, and radiosensitize tumors. METHODS: OCR and mitochondrial superoxide production were assessed by EPR (9 GHz) in vitro in PC-3 and DU-145 prostate cancer cells. Reduced and oxidized glutathione were assessed before and after MM10 exposure. Tumor oxygenation was measured in vivo using 1 GHz EPR oximetry in PC-3 tumor model. Tumors were irradiated at the time of maximal reoxygenation. RESULTS: 24-hours exposure to MM10 significantly decreased the OCR of PC-3 and DU-145 cancer cells. An increase in mitochondrial superoxide levels was observed in PC-3 but not in DU-145 cancer cells, an observation consistent with the differences observed in glutathione levels in both cancer cell lines. In vivo, the tumor oxygenation significantly increased in the PC-3 model (daily injection of 2 mg/kg MM10) 48 and 72 h after initiation of the treatment. Despite the significant effect on tumor hypoxia, MM10 combined to irradiation did not increase the tumor growth delay compared to the irradiation alone. CONCLUSIONS: MM10 altered the OCR in prostate cancer cells. The effect of MM10 on the superoxide level was dependent on the antioxidant capacity of cell line. In vivo, MM10 alleviated tumor hypoxia, yet without consequence in terms of response to irradiation.


Assuntos
Metformina , Neoplasias Pancreáticas , Neoplasias da Próstata , Antioxidantes/farmacologia , Carbono/metabolismo , Linhagem Celular Tumoral , Dissulfeto de Glutationa/metabolismo , Humanos , Masculino , Metformina/farmacologia , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
10.
Phys Chem Chem Phys ; 24(20): 12167-12175, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543564

RESUMO

Dynamic nuclear polarization (DNP) at cryogenic temperatures has proved to be a valuable technique to enhance the sensitivity of solid-state NMR spectroscopy. Over the years, sample formulations have been optimized for experiments at cryogenic temperatures. At 9.4 T, the best performing polarizing agents are dinitroxides such as AMUPol and TEKPol that lead to enhancement factors of around 250 at 100 K. However, the performance of these radicals plummets at higher temperatures. Here we introduce trehalose-based DNP polarizing matrices, suitable to embed biomolecular assemblies. Several formulation protocols are investigated, in combination with various polarizing agents, including a new biradical structure chemically tethered to a trehalose molecule. The DNP efficiency of these new polarizing media is screened as a function of the radical concentration, the hydration level of the matrix and the protein content. Sizeable enhancement factors are reported at 100 K and 9.4 T. More importantly, we show that the DNP performance of these new polarizing media outperform the conventionally used water/glycerol mixture at temperatures above 180 K. This study establishes trehalose matrices as a promising DNP medium for experiments at temperatures >150 K where conventional water-based formulations soften and are no longer viable, thus opening new avenues for DNP enhanced solid-state NMR spectroscopy at temperatures close to ambient temperature.


Assuntos
Imageamento por Ressonância Magnética , Trealose , Espectroscopia de Ressonância Magnética/métodos , Temperatura , Água
11.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969859

RESUMO

Several publications describing high-resolution structures of amyloid-ß (Aß) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments-namely, 1H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on 13C,15N-enriched, and fully protonated samples of M0Aß1-42 fibrils by high-field 1H-detected NMR at 23.4 T and 18.8 T, and 13C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M0Aß1-42 (K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than 1H detection. These results suggest that 1H detection and DNP may be the spectroscopic approaches of choice for future studies of Aß and other amyloid systems.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Conformação Proteica , Temperatura
12.
J Phys Chem B ; 125(48): 13329-13338, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34818009

RESUMO

Pairing the spectral resolution provided by high magnetic fields at ambient temperature with the enhanced sensitivity offered by dynamic nuclear polarization (DNP) is a major goal of modern solid-state NMR spectroscopy, which will allow one to unlock ever-challenging applications. This study demonstrates that, by combining HyTEK2, a hybrid BDPA-nitroxide biradical polarizing agent, with ortho-terphenyl (OTP), a rigid DNP matrix, enhancement factors as high as 65 can be obtained at 230 K, 40 kHz magic angle spinning (MAS), and 18.8 T. The temperature dependence of the DNP enhancement and its behavior around the glass transition temperature (Tg) of the matrix is investigated by variable-temperature EPR measurements of the electron relaxation properties and numerical simulations. A correlation is suggested between the decrease in enhancement at the passage of the Tg and the concomitant drop of both transverse electron relaxation times in the biradical.


Assuntos
Campos Magnéticos , Óxidos de Nitrogênio , Espectroscopia de Ressonância Magnética , Temperatura
13.
Org Lett ; 23(14): 5283-5287, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-33851849

RESUMO

A viologen-phenylene-imidazole (VPI) conjugate, previously shown to be singly complexed by CB[7] and doubly bound by CB[8], is herein shown to form antiparallel triple stacks in water with cucurbit[10]uril (CB[10]), pairwise complexing the guest trimer. The quinary host:guest 2:3 complex showed features assignable to charge-transfer interactions. Under reductive conditions, CB[10] could solubilize a VPI radical, even though CB[10] and reduced VPI are almost insoluble, thereby illustrating a possible new application for CB[10].

14.
Angew Chem Int Ed Engl ; 60(23): 12847-12851, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33750007

RESUMO

Structure determination of adjuvant-coupled antigens is essential for rational vaccine development but has so far been hampered by the relatively low antigen content in vaccine formulations and by their heterogeneous composition. Here we show that magic-angle spinning (MAS) solid-state NMR can be used to assess the structure of the influenza virus hemagglutinin stalk long alpha helix antigen, both in its free, unformulated form and once chemically coupled to the surface of large virus-like particles (VLPs). The sensitivity boost provided by high-field dynamic nuclear polarization (DNP) and proton detection at fast MAS rates allows to overcome the penalty associated with the antigen dilution. Comparison of the MAS NMR fingerprints between the free and VLP-coupled forms of the antigen provides structural evidence of the conservation of its native fold upon bioconjugation. This work demonstrates that high-sensitivity MAS NMR is ripe to play a major role in vaccine design, formulation studies, and manufacturing process development.


Assuntos
Antígenos Virais/análise , Vacinas de Partículas Semelhantes a Vírus/química , Ressonância Magnética Nuclear Biomolecular
15.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468690

RESUMO

Formation of multispecies communities allows nearly every niche on earth to be colonized, and the exchange of molecular information among neighboring bacteria in such communities is key for bacterial success. To clarify the principles controlling interspecies interactions, we previously developed a coculture model with two anaerobic bacteria, Clostridium acetobutylicum (Gram positive) and Desulfovibrio vulgaris Hildenborough (Gram negative, sulfate reducing). Under conditions of nutritional stress for D. vulgaris, the existence of tight cell-cell interactions between the two bacteria induced emergent properties. Here, we show that the direct exchange of carbon metabolites produced by C. acetobutylicum allows D vulgaris to duplicate its DNA and to be energetically viable even without its substrates. We identify the molecular basis of the physical interactions and how autoinducer-2 (AI-2) molecules control the interactions and metabolite exchanges between C. acetobutylicum and D. vulgaris (or Escherichia coli and D. vulgaris). With nutrients, D. vulgaris produces a small molecule that inhibits in vitro the AI-2 activity and could act as an antagonist in vivo Sensing of AI-2 by D. vulgaris could induce formation of an intercellular structure that allows directly or indirectly metabolic exchange and energetic coupling between the two bacteria.IMPORTANCE Bacteria have usually been studied in single culture in rich media or under specific starvation conditions. However, in nature they coexist with other microorganisms and build an advanced society. The molecular bases of the interactions controlling this society are poorly understood. Use of a synthetic consortium and reducing complexity allow us to shed light on the bacterial communication at the molecular level. This study presents evidence that quorum-sensing molecule AI-2 allows physical and metabolic interactions in the synthetic consortium and provides new insights into the link between metabolism and bacterial communication.


Assuntos
Clostridium acetobutylicum/metabolismo , DNA Bacteriano/genética , Desulfovibrio vulgaris/metabolismo , Metabolismo Energético/genética , Homosserina/análogos & derivados , Lactonas/metabolismo , Percepção de Quorum/genética , Clostridium acetobutylicum/genética , Técnicas de Cocultura , Meios de Cultura/química , Meios de Cultura/farmacologia , Replicação do DNA , DNA Bacteriano/metabolismo , Desulfovibrio vulgaris/genética , Fluoresceínas/química , Genes Reporter , Homosserina/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Transdução de Sinais , Proteína Vermelha Fluorescente
16.
Commun Chem ; 4(1): 95, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-36697707

RESUMO

Magnetic Resonance Imaging combined with hyperpolarized 13C-labelled metabolic contrast agents produced via dissolution Dynamic Nuclear Polarization can, non-invasively and in real-time, report on tissue specific aberrant metabolism. However, hyperpolarization equipment is expensive, technically demanding and needs to be installed on-site for the end-user. In this work, we provide a robust methodology that allows remote production of the hyperpolarized 13C-labelled metabolic contrast agents. The methodology, built on photo-induced thermally labile radicals, allows solid sample extraction from the hyperpolarization equipment and several hours' lifetime of the 13C-labelled metabolic contrast agents at appropriate storage/transport conditions. Exemplified with [U-13C, d7]-D-glucose, we remotely produce hyperpolarized 13C-labelled metabolic contrast agents and generate above 10,000-fold liquid-state Magnetic Resonance signal enhancement at 9.4 T, keeping on-site only a simple dissolution device.

17.
Angew Chem Int Ed Engl ; 60(12): 6617-6623, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33355982

RESUMO

Molecular machines are ubiquitous in nature and function away from equilibrium by consuming fuels to produce appropriate work. Chemists have recently excelled at mimicking the fantastic job performed by natural molecular machines with synthetic systems soluble in organic solvents. In efforts toward analogous systems working in water, we show that guest molecules can be exchanged in the synthetic macrocycle cucurbit[7]uril by involving kinetic traps, and in such a way as modulating energy wells and kinetic barriers using pH, light, and redox stimuli. Ditolyl-viologen can also be exchanged using the best kinetic trap and interfaced with alginate, thus affording pH-responsive blue, fluorescent hydrogels. With tunable rate and binding constants toward relevant guests, cucurbiturils may become excellent ring molecules for the construction of advanced molecular machines working in water.

18.
Sci Rep ; 10(1): 18626, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122809

RESUMO

Hydroethidine (HE) and hydropropidine ([Formula: see text]) are fluorogenic probes used for the detection of the intra- and extracellular superoxide radical anion ([Formula: see text]). In this study, we provide evidence that HE and [Formula: see text] react rapidly with the biologically relevant radicals, including the hydroxyl radical, peroxyl radicals, the trioxidocarbonate radical anion, nitrogen dioxide, and the glutathionyl radical, via one-electron oxidation, forming the corresponding radical cations. At physiological pH, the radical cations of the probes react rapidly with [Formula: see text], leading to the specific 2-hydroxylated cationic products. We determined the rate constants of the reaction between [Formula: see text] and the radical cations of the probes. We also synthesized N-methylated analogs of [Formula: see text] and HE which were used in mechanistic studies. Methylation of the amine groups was not found to prevent the reaction between the radical cation of the probe and the superoxide, but it significantly increased the lifetime of the radical cation and had a substantial effect on the profiles of the oxidation products by inhibiting the formation of dimeric products. We conclude that the N-methylated analogs of HE and [Formula: see text] may be used as a scaffold for the design of a new generation of probes for intra- and extracellular superoxide.

19.
J Phys Chem Lett ; 11(19): 8386-8391, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32960059

RESUMO

Solid-state nuclear magnetic resonance under magic angle spinning (MAS) enhanced with dynamic nuclear polarization (DNP) is a powerful approach to characterize many important classes of materials, allowing access to previously inaccessible structural and dynamic parameters. Here, we present the first DNP MAS experiments using a 0.7 mm MAS probe, which allows us to reach spinning frequencies of 65 kHz, with microwave irradiation, at 100 K. At the highest magnetic field available for DNP today (21.1 T), we find that the polarizing agent HyTEK2 provides DNP enhancements as high as 200 at a spinning rate of 65 kHz at 100 K, and BDPA yields an enhancement of 106 under the same conditions. Fast spinning rates enable excellent DNP performance, but they also yield unprecedented 1H resolution under DNP conditions. We report well-resolved 1H-detected 1H-13C and 1H-15N correlation spectra of microcrystalline histidine·HCl·H2O.

20.
J Am Chem Soc ; 142(39): 16587-16599, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32806886

RESUMO

The development of magic-angle spinning dynamic nuclear polarization (MAS DNP) has allowed atomic-level characterization of materials for which conventional solid-state NMR is impractical due to the lack of sensitivity. The rapid progress of MAS DNP has been largely enabled through the understanding of rational design concepts for more efficient polarizing agents (PAs). Here, we identify a new design principle which has so far been overlooked. We find that the local geometry around the unpaired electron can change the DNP enhancement by an order of magnitude for two otherwise identical conformers. We present a set of 13 new stable mono- and dinitroxide PAs for MAS DNP NMR where this principle is demonstrated. The radicals are divided into two groups of isomers, named open (O-) and closed (C-), based on the ring conformations in the vicinity of the N-O bond. In all cases, the open conformers exhibit dramatically improved DNP performance as compared to the closed counterparts. In particular, a new urea-based biradical named HydrOPol and a mononitroxide O-MbPyTol yield enhancements of 330 ± 60 and 119 ± 25, respectively, at 9.4 T and 100 K, which are the highest enhancements reported so far in the aqueous solvents used here. We find that while the conformational changes do not significantly affect electron spin-spin distances, they do affect the distribution of the exchange couplings in these biradicals. Electron spin echo envelope modulation (ESEEM) experiments suggest that the improved performance of the open conformers is correlated with higher solvent accessibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...