Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 19114, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154448

RESUMO

Heparan sulfate (HS) chains, covalently linked to heparan sulfate proteoglycans (HSPG), promote synaptic development and functions by connecting various synaptic adhesion proteins (AP). HS binding to AP could vary according to modifications of HS chains by different sulfotransferases. 3-O-sulfotransferases (Hs3sts) produce rare 3-O-sulfated HSs (3S-HSs), of poorly known functions in the nervous system. Here, we showed that a peptide known to block herpes simplex virus by interfering with 3S-HSs in vitro and in vivo (i.e. G2 peptide), specifically inhibited neural activity, reduced evoked glutamate release, and impaired synaptic assembly in hippocampal cell cultures. A role for 3S-HSs in promoting synaptic assembly and neural activity is consistent with the synaptic interactome of G2 peptide, and with the detection of Hs3sts and their products in synapses of cultured neurons and in synaptosomes prepared from developing brains. Our study suggests that 3S-HSs acting as receptors for herpesviruses might be important regulators of neuronal and synaptic development in vertebrates.


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Sulfotransferases/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Camundongos , Neurogênese/fisiologia , Neurônios/metabolismo
2.
PLoS One ; 14(1): e0209573, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30608949

RESUMO

Glycosaminoglycans (GAGs), including heparan sulfates and chondroitin sulfates, are major components of the extracellular matrix. Upon interacting with heparin binding growth factors (HBGF), GAGs participate to the maintaintenance of tissue homeostasis and contribute to self-healing. Although several processes regulated by HBGF are altered in Alzheimer's disease, it is unknown whether the brain GAG capacities to bind and regulate the function of HBGF or of other heparin binding proteins, as tau, are modified in this disease. Here, we show that total sulfated GAGs from hippocampus of Alzheimer's disease have altered capacities to bind and potentiate the activities of growth factors including FGF-2, VEGF, and BDNF while their capacity to bind to tau is remarkable increased. Alterations of GAG structures and capacities to interact with and regulate the activity of heparin binding proteins might contribute to impaired tissue homeostasis in the Alzheimer's disease brain.


Assuntos
Doença de Alzheimer/metabolismo , Glicosaminoglicanos/metabolismo , Proteínas tau/fisiologia , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Brasil , Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Lobo Temporal/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
FEBS Lett ; 592(23): 3806-3818, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29729013

RESUMO

Neurodegenerative disorders, such as Alzheimer's, Parkinson's, and prion diseases, are directly linked to the formation and accumulation of protein aggregates in the brain. These aggregates, principally made of proteins or peptides that clamp together after acquisition of ß-folded structures, also contain heparan sulfates. Several lines of evidence suggest that heparan sulfates centrally participate in the protein aggregation process. In vitro, they trigger misfolding, oligomerization, and fibrillation of amyloidogenic proteins, such as Aß, tau, α-synuclein, prion protein, etc. They participate in the stabilization of protein aggregates, protect them from proteolysis, and act as cell-surface receptors for the cellular uptake of proteopathic seeds during their spreading. This review focuses attention on the importance of heparan sulfates in protein aggregation in brain disorders including Alzheimer's, Parkinson's, and prion diseases. The presence of these sulfated polysaccharides in protein inclusions in vivo and their capacity to trigger protein aggregation in vitro strongly suggest that they might play critical roles in the neurodegenerative process. Further advances in glyco-neurobiology will improve our understanding of the molecular and cellular mechanisms leading to protein aggregation and neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Heparitina Sulfato/metabolismo , Doença de Parkinson/metabolismo , Doenças Priônicas/metabolismo , Agregados Proteicos , Amiloide/química , Amiloide/metabolismo , Heparitina Sulfato/química , Humanos , Modelos Químicos , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
4.
Free Radic Biol Med ; 104: 311-323, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28108277

RESUMO

Microglia fulfill important immunological functions in the brain by responding to pathological stresses and modulating their activities according to pro- or anti-inflammatory stimuli. Recent evidence indicates that changes in metabolism accompany the switch in microglia activation state, favoring glycolysis over oxidative phosphorylation when cells exhibit a pro-inflammatory phenotype. Carbon monoxide (CO), a byproduct of heme breakdown by heme oxygenase, exerts anti-inflammatory action and affects mitochondrial function in cells and tissues. In the present study, we analyzed the metabolic profile of BV2 and primary mouse microglia exposed to the CO-releasing molecules CORM-401 and CORM-A1 and investigated whether CO affects the metabolic adaptation of cells to the inflammatory stimulus lipopolysaccharide (LPS). Microglia respiration and glycolysis were measured using an Extracellular Flux Analyzer to provide a real-time bioenergetic assessment, and biochemical parameters were evaluated to define the metabolic status of the cells under normal or inflammatory conditions. We show that CO prevents LPS-induced depression of microglia respiration and reduction in ATP levels while altering the early expression of inflammatory markers, suggesting the metabolic changes induced by CO are associated with control of inflammation. CO alone affects microglia respiration depending on the concentration, as low levels increase oxygen consumption while higher amounts inhibit respiration. Increased oxygen consumption was attributed to an uncoupling activity observed in cells, at the molecular level (respiratory complex activities) and during challenge with LPS. Thus, application of CO is a potential countermeasure to reverse the metabolic changes that occur during microglia inflammation and in turn modulate their inflammatory profile.


Assuntos
Monóxido de Carbono/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Glicólise , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Microglia/patologia , Mitocôndrias/patologia , Fosforilação Oxidativa , Consumo de Oxigênio , Piroptose/genética , Respiração
5.
Brain ; 138(Pt 5): 1339-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25842390

RESUMO

Heparan sulphate (glucosamine) 3-O-sulphotransferase 2 (HS3ST2, also known as 3OST2) is an enzyme predominantly expressed in neurons wherein it generates rare 3-O-sulphated domains of unknown functions in heparan sulphates. In Alzheimer's disease, heparan sulphates accumulate at the intracellular level in disease neurons where they co-localize with the neurofibrillary pathology, while they persist at the neuronal cell membrane in normal brain. However, it is unknown whether HS3ST2 and its 3-O-sulphated heparan sulphate products are involved in the mechanisms leading to the abnormal phosphorylation of tau in Alzheimer's disease and related tauopathies. Here, we first measured the transcript levels of all human heparan sulphate sulphotransferases in hippocampus of Alzheimer's disease (n = 8; 76.8 ± 3.5 years old) and found increased expression of HS3ST2 (P < 0.001) compared with control brain (n = 8; 67.8 ± 2.9 years old). Then, to investigate whether the membrane-associated 3-O-sulphated heparan sulphates translocate to the intracellular level under pathological conditions, we used two cell models of tauopathy in neuro-differentiated SH-SY5Y cells: a tau mutation-dependent model in cells expressing human tau carrying the P301L mutation hTau(P301L), and a tau mutation-independent model in where tau hyperphosphorylation is induced by oxidative stress. Confocal microscopy, fluorescence resonance energy transfer, and western blot analyses showed that 3-O-sulphated heparan sulphates can be internalized into cells where they interact with tau, promoting its abnormal phosphorylation, but not that of p38 or NF-κB p65. We showed, in vitro, that the 3-O-sulphated heparan sulphates bind to tau, but not to GSK3B, protein kinase A or protein phosphatase 2, inducing its abnormal phosphorylation. Finally, we demonstrated in a zebrafish model of tauopathy expressing the hTau(P301L), that inhibiting hs3st2 (also known as 3ost2) expression results in a strong inhibition of the abnormally phosphorylated tau epitopes in brain and in spinal cord, leading to a complete recovery of motor neuronal axons length (n = 25; P < 0.005) and of the animal motor response to touching stimuli (n = 150; P < 0.005). Our findings indicate that HS3ST2 centrally participates to the molecular mechanisms leading the abnormal phosphorylation of tau. By interacting with tau at the intracellular level, the 3-O-sulphated heparan sulphates produced by HS3ST2 might act as molecular chaperones allowing the abnormal phosphorylation of tau. We propose HS3ST2 as a novel therapeutic target for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Sulfotransferases/metabolismo , Proteínas tau/metabolismo , Animais , Comportamento Animal , Células Cultivadas , Humanos , NF-kappa B/metabolismo , Fosforilação , Tauopatias/metabolismo
6.
PLoS One ; 10(1): e0116641, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25617759

RESUMO

The causes of Parkinson disease (PD) remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD), the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs) regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology.


Assuntos
Glicosaminoglicanos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregados Proteicos , alfa-Sinucleína/química , 1-Metil-4-fenilpiridínio/farmacologia , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Catepsina D/metabolismo , Linhagem Celular Tumoral , Glicosaminoglicanos/biossíntese , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Agregados Proteicos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , alfa-Sinucleína/metabolismo
7.
Neurobiol Aging ; 33(5): 1005.e11-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22035591

RESUMO

Glycosaminoglycans (GAGs) are major extracellular matrix components known to tightly regulate cell behavior by interacting with tissue effectors as trophic factors and other heparin binding proteins. Alterations of GAGs structures might thus modify the nature and extent of these interactions and alter tissue integrity. Here, we studied levels and composition of GAGs isolated from adult and aged human hippocampus and investigated if their changes can influence the function of important trophic factors and the Aß42 peptide toxicity. Biochemical analyses showed that heparan sulfates are increased in the aged hippocampus. Moreover, GAGs from aged hippocampus showed altered capacities to regulate trophic factor activities without changing their capacities to protect cells from Aß42 toxicity, compared to adult hippocampus GAGs. Structural alterations in GAGs from elderly were suggested by differential transcripts levels of key biosynthetic enzymes. C5-epimerase and 2-OST expressions were decreased while NDST-2 and 3-OST-4 were increased; in contrast, heparanase expression was unchanged. Results suggest that alteration of GAGs in hippocampus of aged subjects could participate to tissue impairment during aging.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/fisiologia , Peptídeos beta-Amiloides/toxicidade , Glicosaminoglicanos/fisiologia , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fragmentos de Peptídeos/fisiologia , Fragmentos de Peptídeos/toxicidade , Adolescente , Adulto , Doença de Alzheimer/patologia , Feminino , Hipocampo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Biomaterials ; 32(3): 769-76, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20947159

RESUMO

Biologically active oligosaccharides related to glycosaminoglycans are accumulating increased attention because of their therapeutic potential and for their value in mechanistic studies. Heparan mimetics (HMs) are a family of dextran based polymer known to mimic the properties of glycosaminoglycans, and particularly those of heparan sulfates, as to interact with heparin binding proteins. HMs have shown to stimulate tissue repair in various animal models. Here, we use different methods to depolymerize HMs in order to produce a library of related oligosaccharides and study their biological activities. Since HMs were resistant to endoglycanases activities, depolymerization was achieved by chemical approaches. In vitro biological studies showed that HM oligosaccharides can differentially potentiate FGF-2 mitogenic and antithrombotic activities. In vivo, a selected oligosaccharide (H-dp12) showed to be able to regenerate tissue almost as well as the related polymeric product. The very low anticoagulant activity and high biological activity of low mass oligosaccharides give to these products a new therapeutic potential.


Assuntos
Glicosaminoglicanos/química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Animais , Linhagem Celular , Heparitina Sulfato/química , Masculino , Camundongos , Úlcera Cutânea/terapia , Engenharia Tecidual/métodos , Cicatrização/fisiologia
9.
Biochem Biophys Res Commun ; 363(1): 95-100, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17826736

RESUMO

Polysulfated molecules, as the family of heparan mimetics (HMs) and pentosan polysulfate, are considered among the more promising drugs used in experimental models of prion diseases. Regardless of their therapeutic potential, structure-function studies on these polyanions are still missing. Here, we report the syntheses of a library of HMs of different molecular sizes, containing various sulfation and carboxylation levels, and substituted or not by different hydrophobic cores. The HMs capacities to inhibit the accumulation of PrPres in chronically infected cells (ScGT1-7) and their PrPc binding abilities were examined. Our results showed that an optimal size and sulfation degree are needed for optimum activity, that incorporation of hydrophobic moieties increases compounds efficacy and that the presence of carboxymethyl moieties decreases it. These structural features should be considered on the modelling of polyanionic compounds for optimum anti-prion activities and for advancing in the understanding the mechanisms involved in their biological actions.


Assuntos
Heparitina Sulfato/administração & dosagem , Heparitina Sulfato/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Ânions , Sítios de Ligação , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/uso terapêutico , Linhagem Celular , Humanos , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...