Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(5): 2348-2374, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589666

RESUMO

Microglia sculpt developing neural circuits by eliminating excess synapses in a process called synaptic pruning, by removing apoptotic neurons, and by promoting neuronal survival. To elucidate the role of microglia during embryonic and postnatal brain development, we used a mouse model deficient in microglia throughout life by deletion of the fms-intronic regulatory element (FIRE) in the Csf1r locus. Surprisingly, young adult Csf1rΔFIRE/ΔFIRE mice display no changes in excitatory and inhibitory synapse number and spine density of CA1 hippocampal neurons compared with Csf1r+/+ littermates. However, CA1 neurons are less excitable, receive less CA3 excitatory input and show altered synaptic properties, but this does not affect novel object recognition. Cytokine profiling indicates an anti-inflammatory state along with increases in ApoE levels and reactive astrocytes containing synaptic markers in Csf1rΔFIRE/ΔFIRE mice. Notably, these changes in Csf1rΔFIRE/ΔFIRE mice closely resemble the effects of acute microglial depletion in adult mice after normal development. Our findings suggest that microglia are not mandatory for synaptic pruning, and that in their absence pruning can be achieved by other mechanisms.


Assuntos
Hipocampo , Microglia , Sinapses , Animais , Microglia/metabolismo , Sinapses/metabolismo , Camundongos , Hipocampo/metabolismo , Hipocampo/citologia , Espinhas Dendríticas/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Plasticidade Neuronal , Neurônios/metabolismo , Ácido Glutâmico/metabolismo
2.
Acta Physiol (Oxf) ; 238(2): e13970, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37000425

RESUMO

Dysfunction of circadian and sleep rhythms is an early feature of many neurodegenerative diseases. Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in cognitive and psychiatric disturbances. Although it is largely unclear whether dysfunctions in sleep and circadian rhythms contribute to the etiology of AD or are a consequence of the disease, there is evidence that these conditions are involved in a complex self-reinforcing bidirectional relationship. According to the recent studies, dysregulation of the circadian clock already occurs during the asymptomatic stage of the disease and could promote neurodegeneration. Thus, restoration of sleep and circadian rhythms in preclinical AD may represent an opportunity for early intervention to slow the disease course.


Assuntos
Doença de Alzheimer , Relógios Circadianos , Transtornos do Sono-Vigília , Humanos , Sono/fisiologia , Ritmo Circadiano/fisiologia
3.
Neuron ; 110(20): 3318-3338.e9, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36265442

RESUMO

Brain tissue transcriptomes may be organized into gene coexpression networks, but their underlying biological drivers remain incompletely understood. Here, we undertook a large-scale transcriptomic study using 508 wild-type mouse striatal tissue samples dissected exclusively in the afternoons to define 38 highly reproducible gene coexpression modules. We found that 13 and 11 modules are enriched in cell-type and molecular complex markers, respectively. Importantly, 18 modules are highly enriched in daily rhythmically expressed genes that peak or trough with distinct temporal kinetics, revealing the underlying biology of striatal diurnal gene networks. Moreover, the diurnal coexpression networks are a dominant feature of daytime transcriptomes in the mouse cortex. We next employed the striatal coexpression modules to decipher the striatal transcriptomic signatures from Huntington's disease models and heterozygous null mice for 52 genes, uncovering novel functions for Prkcq and Kdm4b in oligodendrocyte differentiation and bipolar disorder-associated Trank1 in regulating anxiety-like behaviors and nocturnal locomotion.


Assuntos
Doença de Huntington , Transcriptoma , Animais , Camundongos , Proteína Quinase C-theta/genética , Redes Reguladoras de Genes , Doença de Huntington/genética , Encéfalo
4.
Neurobiol Dis ; 144: 105024, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32702387

RESUMO

Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a trinucleotide (CAG) repeat expansion in the huntingtin gene (HTT). The R6/2 transgenic mouse model of HD expresses exon 1 of the human HTT gene with approximately 150 CAG repeats. R6/2 mice develop progressive behavioural abnormalities, impaired neurogenesis, and atrophy of several brain regions. In recent years, erythropoietin (EPO) has been shown to confer neuroprotection and enhance neurogenesis, rendering it a promising molecule to attenuate HD symptoms. In this study, the therapeutic potential of EPO was evaluated in female R6/2 transgenic mice. A single bilateral injection of a lentivirus encoding human EPO (LV-hEPO) was performed into the lateral ventricles of R6/2 mice at disease onset (8 weeks of age). Control groups were either untreated or injected with a lentivirus encoding green fluorescent protein (LV-GFP). Thirty days after virus administration, hEPO mRNA and protein were present in injected R6/2 brains. Compared to control R6/2 mice, LV-hEPO-treated R6/2 mice exhibited reduced hippocampal atrophy, increased neuroblast branching towards the dentate granular cell layer, and improved spatial cognition. Our results suggest that LV-hEPO administration may be a promising strategy to reduce cognitive impairment in HD.


Assuntos
Cognição , Eritropoetina/genética , Hipocampo/patologia , Doença de Huntington/fisiopatologia , Navegação Espacial , Animais , Atrofia , Modelos Animais de Doenças , Eritropoetina/metabolismo , Feminino , Terapia Genética , Doença de Huntington/patologia , Injeções Intraventriculares , Lentivirus , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais , Tamanho do Órgão , Transfecção
5.
Cancers (Basel) ; 12(4)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32295075

RESUMO

Accumulating evidence points to a link between circadian clock dysfunction and the molecular events that drive tumorigenesis. Here, we investigated the connection between the circadian clock and the hallmarks of cancer in an in vitro model of colorectal cancer (CRC). We used a cross-platform data normalization method to concatenate and compare available microarray and RNA-sequencing time series data of CRC cell lines derived from the same patient at different disease stages. Our data analysis suggests differential regulation of molecular pathways between the CRC cells and identifies several of the circadian and likely clock-controlled genes (CCGs) as cancer hallmarks and circadian drug targets. Notably, we found links of the CCGs to Huntington's disease (HD) in the metastasis-derived cells. We then investigated the impact of perturbations of our candidate genes in a cohort of 439 patients with colon adenocarcinoma retrieved from the Cancer Genome Atlas (TCGA). The analysis revealed a correlation of the differential expression levels of the candidate genes with the survival of patients. Thus, our study provides a bioinformatics workflow that allows for a comprehensive analysis of circadian properties at different stages of colorectal cancer, and identifies a new association between cancer and HD.

6.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31744839

RESUMO

The circadian clock located in the suprachiasmatic nucleus (SCN) in mammals entrains to ambient light via the retinal photoreceptors. This allows behavioral rhythms to change in synchrony with seasonal and daily changes in light period. Circadian rhythmicity is progressively disrupted in Huntington's disease (HD) and in HD mouse models such as the transgenic R6/2 line. Although retinal afferent inputs to the SCN are disrupted in R6/2 mice at late stages, they can respond to changes in light/dark cycles, as seen in jet lag and 23 h/d paradigms. To investigate photic entrainment and SCN function in R6/2 mice at different stages of disease, we first assessed the effect on locomotor activity of exposure to a 15 min light pulse given at different times of the day. We then placed the mice under five non-standard light conditions. These were light cycle regimes (T-cycles) of T21 (10.5 h light/dark), T22 (11 h light/dark), T26 (13 h light/dark), constant light, or constant dark. We found a progressive impairment in photic synchronization in R6/2 mice when the stimuli required the SCN to lengthen rhythms (phase-delaying light pulse, T26, or constant light), but normal synchronization to stimuli that required the SCN to shorten rhythms (phase-advancing light pulse and T22). Despite the behavioral abnormalities, we found that Per1 and c-fos gene expression remained photo-inducible in SCN of R6/2 mice. Both the endogenous drift of the R6/2 mouse SCN to shorter periods and its inability to adapt to phase-delaying changes will contribute to the HD circadian dysfunction.


Assuntos
Ritmo Circadiano/fisiologia , Doença de Huntington/fisiopatologia , Atividade Motora/fisiologia , Fotoperíodo , Retina/fisiopatologia , Núcleo Supraquiasmático/fisiopatologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Doença de Huntington/metabolismo , Camundongos , Neurônios/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Estimulação Luminosa , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Retina/metabolismo , Núcleo Supraquiasmático/metabolismo
7.
Neuropharmacology ; 131: 337-350, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29274752

RESUMO

Circadian abnormalities seen in Huntington's disease (HD) patients are recapitulated in several HD transgenic mouse models. In mice, alongside the master clock located in the suprachiasmatic nucleus (SCN), two other oscillators may influence circadian behaviour. These are the food-entrainable oscillator (FEO) and the methamphetamine-sensitive circadian oscillator (MASCO). SCN- and MASCO- (but not FEO-) driven rhythms are progressively disrupted in the R6/2 mouse model of HD. MASCO-driven rhythms are induced by chronic treatment with low dose of methamphetamine and characterised by an increase in period length to greater than 24 h. Interestingly, the rhythms mediated by MASCO deteriorate earlier than those mediated by the SCN in R6/2 mice. Here, we used a pharmacological strategy to investigate the mechanisms underlying MASCO-driven rhythms in WT mice. In contrast to methamphetamine, chronic cocaine was ineffective in generating a MASCO-like component of activity although it markedly increased locomotion. Furthermore, neither blocking dopamine (DA) receptors (with the DA antagonist haloperidol) nor blocking neurotransmission by inhibiting the activity of vesicular monoamine transporter (with reserpine) prevented the expression of the MASCO-driven rhythms, although both treatments downregulated locomotor activity. Interestingly, chronic treatment with paroxetine, a serotonin-specific reuptake inhibitor commonly used as antidepressant in HD, was able to restore the expression of MASCO-driven rhythms in R6/2 mice. Thus, MASCO-driven rhythms appear to be mediated by both serotoninergic and dopaminergic systems. This supports the idea that abnormalities in MASCO output may contribute to both the HD circadian and psychiatric phenotype.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Relógios Circadianos/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Metanfetamina/farmacologia , Paroxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Cocaína/farmacologia , Modelos Animais de Doenças , Feminino , Doença de Huntington/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Receptores Dopaminérgicos/metabolismo , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-31236493

RESUMO

The circadian disruption seen in patients of Huntington's disease (HD) is recapitulated in the R6/2 mouse model. As the disease progresses, the activity of R6/2 mice increases dramatically during the rest (light) period and decreases during the active (dark) period, eventually leading to a complete disintegration of rest-activity rhythms by the age of ~16 weeks. The suprachiasmatic nucleus controls circadian rhythms by entraining the rest-activity rhythms to the environmental light-dark cycle. Since R6/2 mice can shift their rest-activity rhythms in response to a jet-lag paradigm and also respond positively to bright light therapy (1000 lx), we investigated whether or not a prolonged day length exposure could reduce their daytime activity and improve their behavioural circadian rhythms. We found that a long-day photoperiod (16 h light/8 h dark cycle; 100 lx) significantly improved the survival of R6/2 female mice by 2.4 weeks, compared to mice kept under standard conditions (12 h light/12 h dark cycle). Furthermore, a long-day photoperiod improved the nocturnality of R6/2 female mice. Mice kept under long-day photoperiod also maintained acrophase in activity rhythms (a parameter of rhythmicity strength) in phase with that of WT mice, even if they were symptomatic. By contrast, a short-day photoperiod (8 h light/16 h dark cycle) was deleterious to R6/2 female mice and further reduced the survival by ~1 week. Together, our results support the idea that light therapy may be beneficial for improving circadian dysfunction in HD patients.

9.
Hum Mol Genet ; 25(24)2016 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28031289

RESUMO

Circadian deficits in Huntington's disease (HD) are recapitulated in both fragment (R6/2) and full-length (Q175) mouse models of HD. Circadian rhythms are regulated by the suprachiasmatic nuclei (SCN) in the hypothalamus, which are primarily entrained by light detected by the retina. The SCN receives input from intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin, but also receive input from rods and cones. In turn, ipRGCs mediate a range of non-image forming responses to light including circadian entrainment and the pupillary light response (PLR). Retinal degeneration/dysfunction has been described previously in R6/2 mice. We investigated, therefore, whether or not circadian disruption in HD mice is due to abnormalities in retinal photoreception. We measured the expression of melanopsin, rhodopsin and cone opsin, as well as other retinal markers (tyrosine hydroxylase, calbindin, PKCα and Brna3), in R6/2 and Q175 mice at different stages of disease. We also measured the PLR as a 'readout' for ipRGC function and a marker of light reception by the retina. We found that the PLR was attenuated in both lines of HD mice. This was accompanied by a progressive downregulation of cone opsin and melanopsin expression. We suggest that disease-related changes in photoreception by the retina contribute to the progressive dysregulation of circadian rhythmicity and entrainment seen in HD mice. Colour vision is abnormal in HD patients. Therefore, if retinal deficits similar to those seen in HD mice are confirmed in patients, specifically designed light therapy may be an effective strategy to improve circadian dysfunction.

10.
Exp Neurol ; 286: 69-82, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27646506

RESUMO

Huntington's disease (HD) is a progressive genetic neurodegenerative disorder characterised by motor and cognitive deficits, as well as sleep and circadian abnormalities. In the R6/2 mouse, a fragment model of HD, rest-activity rhythms controlled by the suprachiasmatic nucleus disintegrate completely by 4months of age. Rhythms driven by a second circadian oscillator, the methamphetamine-sensitive circadian oscillator (MASCO), are disrupted even earlier, and cannot be induced after 2months of age. Here, we studied the effect of the HD mutation on the expression of MASCO-driven rhythms in a more slowly developing, genetically relevant mouse model of HD, the Q175 'knock-in' mouse. We induced expression of MASCO output by administering low dose methamphetamine (0.005%) chronically via the drinking water. We measured locomotor activity in constant darkness in wild-type and Q175 mice at 2 (presymptomatic), 6 (early symptomatic), and 12 (symptomatic) months of age. At 2months, all mice expressed MASCO-driven rhythms, regardless of genotype. At older ages, however, there was a progressive gene dose-dependent deficit in MASCO output in Q175 mice. At 6months of age, these rhythms could be observed in only 45% of heterozygous and 15% of homozygous mice. By 1year of age, 90% of homozygous mice had an impaired MASCO output. There was also an age-dependent disruption of MASCO output seen in wild-type mice. The fact that the progressive deficit in MASCO-driven rhythms in Q175 mice is HD gene dose-dependent suggests that, whatever its role in humans, abnormalities in MASCO output may contribute to the HD circadian phenotype.


Assuntos
Transtornos Cronobiológicos/etiologia , Ritmo Circadiano/efeitos dos fármacos , Doença de Huntington/complicações , Doença de Huntington/genética , Fatores Etários , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Humanos , Proteína Huntingtina/genética , Metanfetamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Mutação/genética
11.
J Neurosci ; 29(46): 14423-38, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19923277

RESUMO

To determine the respective role played by orexin/hypocretin and histamine (HA) neurons in maintaining wakefulness (W), we characterized the behavioral and sleep-wake phenotypes of orexin (Ox) knock-out (-/-) mice and compared them with those of histidine-decarboxylase (HDC, HA-synthesizing enzyme)-/- mice. While both mouse strains displayed sleep fragmentation and increased paradoxical sleep (PS), they presented a number of marked differences: (1) the PS increase in HDC(-/-) mice was seen during lightness, whereas that in Ox(-/-) mice occurred during darkness; (2) contrary to HDC(-/-), Ox(-/-) mice had no W deficiency around lights-off, nor an abnormal EEG and responded to a new environment with increased W; (3) only Ox(-/-), but not HDC(-/-) mice, displayed narcolepsy and deficient W when faced with motor challenge. Thus, when placed on a wheel, wild-type (WT), but not littermate Ox(-/-) mice, voluntarily spent their time in turning it and as a result, remained highly awake; this was accompanied by dense c-fos expression in many areas of their brains, including Ox neurons in the dorsolateral hypothalamus. The W and motor deficiency of Ox(-/-) mice was due to the absence of Ox because intraventricular dosing of orexin-A restored their W amount and motor performance whereas SB-334867 (Ox1-receptor antagonist, i.p.) impaired W and locomotion of WT mice during the test. These data indicate that Ox, but not HA, promotes W through enhanced locomotion and suggest that HA and Ox neurons exert a distinct, but complementary and synergistic control of W: the neuropeptide being more involved in its behavioral aspects, whereas the amine is mainly responsible for its qualitative cognitive aspects and cortical EEG activation.


Assuntos
Histamina/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Modelos Animais , Neuropeptídeos/fisiologia , Vigília/fisiologia , Animais , Ritmo Circadiano/genética , Eletroencefalografia/métodos , Feminino , Histidina Descarboxilase/deficiência , Histidina Descarboxilase/genética , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Orexinas , Privação do Sono/genética , Privação do Sono/fisiopatologia , Fases do Sono/genética , Vigília/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA