Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169527, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135075

RESUMO

The need of biofuels from biomass, including sustainable aviation fuel, without using agricultural land dedicated to food crops, is in constant demand. Strategies to intensify biomass production using mycorrhizal fungi, biostimulants and their combinations could be solutions for improving the cultivation of lignocellulosic plants but still lack well-established validation on metal-contaminated soils. This study aimed to assess the yield of Miscanthus x giganteus J.M. Greef & Deuter and Cannabis sativa L. grown on a metal-contaminated agricultural soil (11 mg Cd, 536 mg Pb and 955 mg Zn kg-1) amended with biostimulants and/or arbuscular mycorrhizal fungi, and the shoot Cd, Pb and Zn uptake. A pot trial was carried out with soil collected from a field near a former Pb/Zn smelter in France and six treatments: control (C), protein hydrolysate (a mixture of peptides and amino acids, PH), humic/fulvic acids (HFA), arbuscular mycorrhizae fungi (AMF), PH combined with AMF (PHxAMF), and HFA combined with AMF (HFAxAMF). Metal concentrations in the soil pore water (SPW), pH and electrical conductivity were measured over time. Miscanthus and hemp shoots were harvested on day 90. Both PH and PHxAMF treatments increased SPW Cd, Pb, and Zn concentrations (e.g. by 26, 1.9, and 22.9 times for miscanthus and 9.7, 4.7, and 19.3 times for hemp in the PH and PHxAMF treatments as compared to the control one, respectively). This led to phytotoxicity and reduced shoot yield for miscanthus. Conversely, HFA and HFAxAMF treatments decreased SPW Cd and Zn concentrations, increasing shoot yields for hemp and miscanthus. Shoot Cd, Pb, and Zn uptakes peaked for PH and PHxAMF hemp plants (in µg plant-1, Cd: 310-334, Pb: 34-38, and Zn: 232-309 for PHxAMF and PH, respectively), while lowest values occurred for PH miscanthus plants mainly due to low shoot yield. Overall, this study suggested that humic/fulvic acids can be an effective biostimulant for increasing shoot biomass production in a metal-contaminated soil. These results warrant further investigations of the HFAxAMF in field trials.


Assuntos
Cannabis , Micorrizas , Poluentes do Solo , Micorrizas/metabolismo , Cannabis/metabolismo , Cádmio/análise , Biocombustíveis/análise , Biomassa , Chumbo/análise , Poaceae/metabolismo , Solo/química , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Biodegradação Ambiental
2.
Int J Phytoremediation ; 25(9): 1215-1224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36356305

RESUMO

This study investigated uptake of two organic compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and exogenous caffeine by tomato (Solanum lycopersicum L.), corn (Zea mays L.), and wheat (Triticum aestivum L.). The plants were grown in a growth chamber under recommended conditions and then were exposed to these compounds for 19 days. The uptake of the compounds was measured by sap concentration factor. The plant samples (stem transpiration stream) and solution in the exposure media were taken and analyzed by high performance liquid chromatography-tandem mass spectrometry. The plant stem samples were analyzed after a freeze-thaw centrifugation process. The average sap concentration factor for the RDX by tomato, wheat, and corn was 0.71, 0.67, and 0.65. The average sap concentration factor for the exogenous caffeine by tomato, wheat, and corn was 0.72, 0.50, and 0.34. These relatively high sap concentration factor values were expected as available predictive models offer high sap concentration factor values for moderately hydrophobic and hydrophilic compounds. The generated sap concentration factor values for the RDX and exogenous caffeine are important for improving the accuracy of previously developed machine learning models predicting the uptake and translocation of emerging contaminants.


The uptake of two organic compounds (RDX and exogenous caffeine) was examined in three crop plants (corn, wheat, and tomato). There have not been any uptake studies on exogenous caffeine and also we do not have good data for the uptake of RDX by these three crop plants. The estimated sap concentration factor from these experiments fills the gap in the data for developing predictive models for uptake of emerging contaminants. A novel rapid freeze­thaw/centrifugation extraction method followed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to analyze the samples.


Assuntos
Solanum lycopersicum , Triticum , Triticum/química , Zea mays/química , Cafeína , Biodegradação Ambiental , Produtos Agrícolas
3.
Environ Geochem Health ; 45(1): 19-39, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35435522

RESUMO

The INTENSE project, supported by the EU Era-Net Facce Surplus, aimed at increasing crop production on marginal land, including those with contaminated soils. A field trial was set up at a former wood preservation site to phytomanage a Cu/PAH-contaminated sandy soil. The novelty was to assess the influence of five organic amendments differing in their composition and production process, i.e. solid fractions before and after biodigestion of pig manure, compost and compost pellets (produced from spent mushroom substrate, biogas digestate and straw), and greenwaste compost, on Cu availability, soil properties, nutrient supply, and plant growth. Organic amendments were incorporated into the soil at 2.3% and 5% soil w/w. Total soil Cu varied from 179 to 1520 mg kg-1, and 1 M NH4NO3-extractable soil Cu ranged from 4.7 to 104 mg kg-1 across the 25 plots. Spring barley (Hordeum vulgare cv. Ella) was cultivated in plots. Changes in physico-chemical soil properties, shoot DW yield, shoot ionome, and shoot Cu uptake depending on extractable soil Cu and the soil treatments are reported. Shoot Cu concentration varied from 45 ± 24 to 140 ± 193 mg kg DW-1 and generally increased with extractable soil Cu. Shoot DW yield, shoot Cu concentration, and shoot Cu uptake of barley plants did not significantly differ across the soil treatments in year 1. Based on soil and plant parameters, the effects of the compost and pig manure treatments were globally discriminated from those of the untreated, greenwaste compost and digested pig manure treatments. Compost and its pellets at the 5% addition rate promoted soil functions related to primary production, water purification, and soil fertility, and the soil quality index.


Assuntos
Hordeum , Poluentes do Solo , Animais , Suínos , Esterco , Poluentes do Solo/análise , Biodegradação Ambiental , Solo/química
4.
Sci Total Environ ; 836: 155676, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35523335

RESUMO

The extreme characteristics of mine tailings generally prohibit microbial processes and natural plant growth. Consequently, vast and numerous tailings sites remain barren for decades and highly susceptible to windblown dust and water erosion. Amendment-assisted phytostabilization is a cost-effective and ecologically productive approach to mitigate the potential transport of residual metals. Due to the contrasting and complementary characteristics of biosolids (BS) and biochar (BC), co-application might be more efficient than individually applied. Studies considering BS and BC co-application for multi-metal tailings revegetation are scarce. As tailings revegetation is a multidimensional issue, clearly notable demand exists for a study that provides a comprehensive understanding on the co-application impact on interrelated properties of physicochemical, biological, mineral nitrogen availability, metal immobilization, water-soil interactions, and impacts on plant cultivation and biomass production. This 8-month greenhouse study aimed at investigating the efficacy of co-application strategies targeting BS and carbon-rich amendments (BC or humic substances (HS)) to phytomanage a slightly alkaline Pb/Zn/Cu tailings with bioenergy crops (poplar, willow, and miscanthus). A complementary assessment linking revegetation effectiveness to ecosystem services (ES) provision was also included. Owing to their rich nutrient and organic matter contents, BS had the most pronounced influence on most of the measured properties including physicochemical, enzyme activities, NH4+-N and NO3--N availability, immobilization of Zn, Cu, and Cd, and biomass production. Co-applying with BC exhibited efficient nutrient release and was more effective than BS alone in reducing metal bioavailability and uptake particularly Pb. Poplar and willow exhibited more superior phytostabilization efficiency compared to miscanthus which caused acidification-induced metal mobilization, yet BC and BS co-application was effective in ameliorating this effect. Enhancement of ES and substrate quality index mirrored the positive effect of amendment co-application and plant cultivation. Co-applying HS with BS resulted in improved nutrient cycling while BC enhanced water purification and contamination control services.


Assuntos
Metais Pesados , Salix , Poluentes do Solo , Biodegradação Ambiental , Biossólidos , Carvão Vegetal , Produção Agrícola , Ecossistema , Chumbo , Metais Pesados/análise , Plantas/metabolismo , Poaceae/metabolismo , Salix/metabolismo , Solo/química , Poluentes do Solo/análise , Água , Zinco
5.
Environ Sci Pollut Res Int ; 29(20): 29314-29331, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34661843

RESUMO

The ability of tobacco (Nicotiana tabacum L. cv. Badischer Geudertheimer) for phytomanaging and remediating soil ecological functions at a contaminated site was assessed with a potted soil series made by fading an uncontaminated sandy soil with a contaminated sandy soil from the Borifer brownfield site, Bordeaux, SW France, at the 0%, 25%, 50%, 75%, and 100% addition rates. Activities of sandblasting and painting with metal-based paints occurred for decades at this urban brownfield, polluting the soil with metal(loid)s and organic contaminants, e.g., polycyclic aromatic hydrocarbons, in addition to past backfilling. Total topsoil metal(loid)s (e.g., 54,700 mg Zn and 5060 mg Cu kg-1) exceeded by seven- to tenfold the background values for French sandy soils, but the soil pH was 7.9, and overall, the 1M NH4NO3 extractable soil fractions of metals were relatively low. Leaf area, water content of shoots, and total chlorophyll (Chl) progressively decreased with the soil contamination, but the Chl fluorescence remained constant near its optimum value. Foliar Cu and Zn concentrations varied from 17.8 ± 4.2 (0%) to 27 ± 5 mg Cu kg-1 (100%) and from 60 ± 15 (0%) to 454 ± 53 mg Zn kg-1 (100%), respectively. Foliar Cd concentration peaked up to 1.74 ± 0.09 mg Cd kg-1, and its bioconcentration factor had the highest value (0.2) among those of the metal(loid)s. Few nutrient concentrations in the aboveground plant parts decreased with the soil contamination, e.g., foliar P concentration from 5972 ± 1026 (0%) to 2861 ± 334 mg kg-1 (100%). Vulnerability to drought-induced embolism (P50) did not differ for the tobacco stems across the soil series, whereas their hydraulic efficiency (Ks) declined significantly with increasing soil contamination. Overall, this tobacco cultivar grew relatively well even in the Borifer soil (100%), keeping its photosynthetic system healthy under stress, and contaminant exposure did not increase the vulnerability of the vascular system to drought. This tobacco had a relevant potential to annually phytoextract a part of the bioavailable soil Zn and Cd, i.e., shoot removals representing here 8.8% for Zn and 43.3% for Cd of their 1M NH4NO3 extractable amount in the potted Borifer soil.


Assuntos
Poluentes do Solo , Solo , Biodegradação Ambiental , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Nicotiana
6.
Sci Total Environ ; 780: 146490, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030344

RESUMO

Historical hard-rock mine activities have resulted in nearly half a million mining-impacted sites scattered around the US. Compared to conventional remediation, (aided) phytostabilization is generally cost-effective and ecologically productive approach, particularly for large-scale sites. Native species act to maintain higher local biodiversity, providing a foundation for natural ecological succession. Due to heterogeneity of mine waste, revegetation strategies are inconsistent in approach, and to avoid failure scenarios, greenhouse screening studies can identify candidate plants and amendment strategies before scaling up. This greenhouse study aimed to concurrently screen a variety of native species for their potential to revegetate Cu/Pb/Zn mine tailings and develop a high throughput and non-destructive approach utilizing computer vision and image-based phenotyping technologies to quantify plant responses. A total number of 34 species were screened in this study, which included: 5 trees, 8 grasses, and 21 forbs and legumes. Most of the species tested were Missouri native and prairie species. Plants were non-destructively imaged, and 15 shape and color phenotypic attributes were extracted utilizing computer vision techniques of PlantCV. Compared to reference soil, all species tested were negatively impacted by the tailings' characteristics, with lowest tolerance generally observed in tree species. However, significant improvement in plant growth and tolerance generally observed with biosolids addition with biomass surpassing reference soil for most legumes. Accumulation of Cu, Pb, and Zn was below Domestic Animal Toxicity Limits in most species. Statistically robust differences in species responses were observed using phenotypic data, such as area, height, width, color, and 9 other morphological attributes. Correlations with destructive data indicated that area displayed the greatest positive correlation with biomass and color the greatest negative correlation with shoot metals. Computer visualization greatly increased the phenotypic data and offers a breakthrough in rapid, high throughput data collection to project site-specific phytostabilization strategies to efficiently restore mine-impacted sites.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Computadores , Ensaios de Triagem em Larga Escala , Mineração , Missouri , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
7.
Sci Total Environ ; 751: 141418, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33181989

RESUMO

Uptake of seven organic contaminants including bisphenol A, estriol, 2,4-dinitrotoluene, N,N-diethyl-meta-toluamide (DEET), carbamazepine, acetaminophen, and lincomycin by tomato (Solanum lycopersicum L.), corn (Zea mays L.), and wheat (Triticum aestivum L.) was measured. The plants were grown in a growth chamber under recommended conditions and dosed by these chemicals for 19 days. The plant samples (stem transpiration stream) and solution in the exposure media were taken to measure transpiration stream concentration factor (TSCF). The plant samples were analyzed by a freeze-thaw centrifugation technique followed by high performance liquid chromatography-tandem mass spectrometry detection. Measured average TSCF values were used to test a neural network (NN) model previously developed for predicting plant uptake based on physicochemical properties. The results indicated that moderately hydrophobic compounds including carbamazepine and lincomycin have average TSCF values of 0.43 and 0.79, respectively. The average uptake of DEET, estriol, acetaminophen, and bisphenol A was also measured as 0.34, 0.29, 0.22, and 0.1, respectively. The 2,4-dinitrotoluene was not detected in the stem transpiration stream and it was shown to degrade in the root zone. Based on these results together with plant physiology measurements, we concluded that physicochemical properties of the chemicals did predict uptake, however, the role of other factors should be considered in the prediction of TSCF. While NN model could predict TSCF based on physicochemical properties with acceptable accuracies (mean squared error less than 0.25), the results for 2,4-dinitrotoluene and other compounds confirm the needs for considering other parameters related to both chemicals (stability) and plant species (role of lipids, lignin, and cellulose).


Assuntos
Redes Neurais de Computação , Solanum lycopersicum , Transporte Biológico , Raízes de Plantas , Transpiração Vegetal , Triticum , Zea mays
8.
Sci Total Environ ; 700: 134529, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31693956

RESUMO

At a former wood preservation site contaminated with Cu, various phytomanagement options have been assessed in the last decade through physicochemical, ecotoxicological and biological assays. In a field trial at this site, phytomanagement with a crop rotation based on tobacco and sunflower, combined with the incorporation of compost and dolomitic limestone, has proved to be efficient in Cu-associated risk mitigation, ecological soil functions recovery and net gain of economic and social benefits. To demonstrate the long-term effectiveness and sustainability of phytomanagement, we assessed here the influence of this remediation option on the diversity, composition and structure of microbial communities over time, through a metabarcoding approach. After 9 years of phytomanagement, no overall effect was identified on microbial diversity; the soil amendments, notably the repeated compost application, led to shifts in soil microbial populations. This phytomanagement option induced changes in the composition of soil microbial communities, promoting the growth of microbial groups belonging to Alphaproteobacteria, many being involved in N cycling. Populations of Nitrososphaeria, which are crucial in nitrification, as well as taxa from phyla Planctomycetacia, Chloroflexi and Gemmatimonadetes, which are tolerant to metal contamination and adapted to oligotrophic soil conditions, decreased in amended phytomanaged plots. Our study provides an insight into population dynamics within soil microbial communities under long-term phytomanagement, in line with the assessment of soil ecological functions and their recovery.


Assuntos
Biodegradação Ambiental , Cobre/metabolismo , Helianthus/fisiologia , Nicotiana/fisiologia , Microbiologia do Solo , Poluentes do Solo/metabolismo , Compostagem , Cobre/análise , Solo/química , Poluentes do Solo/análise
9.
Int J Phytoremediation ; 21(5): 425-434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30648418

RESUMO

Mining activities have left a legacy of metals containing tailings impoundments. After mine closure, reclamation of mine wastes can be achieved by restoration of a vegetation cover. This study investigated the impact of biochar (BC), biosolids (BS), humic substances (HS), and mycorrhizal fungi (MF) for improving mine tailings fertility and hydraulic properties, supporting plant establishment, tailings revegetation, and enabling growth of energy crops. We conducted a pot trial by growing willow, poplar, and miscanthus in Pb/Zn/Cu mine tailings untreated or amended with two rates of amendments (low or high input). Biosolids resulted in the most significant changes in tailings properties, neutralizing pH and increasing organic carbon, nutrient concentrations, cation exchange capacity, water retention, and saturated hydraulic conductivity. The greatest increase in energy crops production was also observed in BS treatments enabling the financial viability of mine reclamation. Although BC resulted in significant improvements in tailings fertility and hydraulic properties, its impact on biomass was less pronounced, most likely due to lower N and P available concentrations. Increases in willow and miscanthus biomass were observed in HS and MF treatments in spite of their lower nutrient content. A pot experiment is underway to assess synergistic effects of combining BS with BC, HS, or MF.


Assuntos
Poluentes do Solo/análise , Biodegradação Ambiental , Biomassa , Mineração , Solo/química
10.
Sci Total Environ ; 599-600: 1388-1398, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531917

RESUMO

Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations.

11.
Environ Sci Pollut Res Int ; 24(8): 7468-7481, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28111720

RESUMO

In situ stabilization of Cd, Pb, and Zn in an Austrian agricultural soil contaminated by atmospheric depositions from a smelter plant was assessed with a pine bark chip-derived biochar, alone and in combination with either compost or iron grit. Biochar amendment was also trialed in an uncontaminated soil to detect any detrimental effect. The pot experiment consisted in ten soil treatments (% w/w): untreated contaminated soil (Unt); Unt soil amended with biochar alone (1%: B1; 2.5%: B2.5) and in combination: B1 and B2.5 + 5% compost (B1C and B2.5C), B1 and B2.5 + 1% iron grit (B1Z and B2.5Z); uncontaminated soil (Ctrl); Ctrl soil amended with 1 or 2.5% biochar (CtrlB1, CtrlB2.5). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. The SPW Cd, Pb, and Zn concentrations decreased in all amended-contaminated soils. The biochar effects increased with its addition rate and its combination with either compost or iron grit. Shoot Cd and Zn removals by beans were reduced and shoot Cd, Pb, and Zn concentrations decreased to common values in all amended soils except the B1 soil. Decreases in the SPW Cd/Pb/Zn concentrations did not improve the root and shoot yields of plants as compared to the Ctrl soil.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental , Ferro/química , Metais Pesados , Poluentes do Solo , Solo/química , Madeira/química , Metais Pesados/análise , Metais Pesados/química , Metais Pesados/isolamento & purificação , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação
12.
Sci Total Environ ; 579: 620-627, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27887831

RESUMO

A 2-year pot experiment was carried out to examine the aging effect of biochar (B), alone or combined with iron grit (Z), on Cu stabilization and plant growth in a contaminated soil (964mg Cu kg-1) from a wood preservation site. The experiment consisted in 3 soil treatments, either planted with Arundo donax L. (Ad) or Populus nigra L. (Pn): (1) untreated Cu-contaminated soil (Ad, Pn); (2) Unt+1% (w/w) B (AdB, PnB), and (3) Unt+1% B+1% Z (AdBZ, PnBZ). After 22months, the soil pore water (SPW) was sampled and roots and shoots were harvested. The SPW compositions at 3 and 22months were compared, showing that the SPW Cu2+ concentration increased again in the PnB and PnBZ soils. Cultivation of A. donax enhanced the dissolved organic matter concentration in the SPW, which decreased its Cu2+ concentration but promoted its total Cu concentration in the Ad and AdB soils. Adding Z with B reduced both SPW Cu2+ and Cu concentrations in the pots cultivated by A. donax and P. nigra as compared to B alone. The B and BZ treatments did not enhance root and shoot yields of both plant species as compared to the Unt soil but their shoot Cu concentrations were in the range of common values.


Assuntos
Cobre/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Biomassa , Carvão Vegetal , Cobre/análise , Ferro , Populus , Solo , Poluentes do Solo/análise , Madeira/química
13.
J Hazard Mater ; 320: 458-468, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27585278

RESUMO

Aided phytostabilization of a barren, alkaline metal(loid)-contaminated technosol developed on steel mill wastes, with high soluble Cr and Mo concentrations, was assessed in a pot experiment using (1) Ni/Cd-tolerant populations of Festuca pratensis Huds., Holcus lanatus L., and Plantago lanceolata L. sowed in mixed stand and (2) six soil treatments: untreated soil (UNT), ramial chipped wood (RCW, 500m3ha-1), composted sewage sludge (CSS, 120t DW ha-1), UNT soil amended with compost (5% w/w) and either vermiculite (5%, VOM) or iron grit (1%, OMZ), and an uncontaminated soil (CTRL). In the CSS soil, pH and soluble Cr decreased whereas soluble Cu, K, Fe, Mn, Mg, Ni and P increased. The RCW treatment enhanced soluble Fe, Mn, and Mg concentrations. After 15 weeks, shoot DW yield and shoot Cd, Cu, Fe, Mn, Mo, Zn, and Mg removals peaked for F. pratensis grown on the CSS soil, with lowest shoot Cr, Ni and Mo concentrations. Holcus lanatus only grew on the CTRL, UNT, and CSS soils and P. lanceolata on the CTRL soil. Best treatment, F. pratensis grown on the CSS soil, led to a dense grass cover but its shoot Mo concentration exceeded the maximum permitted concentration in forage.

14.
Sci Total Environ ; 566-567: 816-825, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27259036

RESUMO

Two biochars, a green waste compost and iron grit were used, alone and in combination, as amendment to improve soil properties and in situ stabilize Cu in a contaminated soil (964mgCukg(-1)) from a wood preservation site. The pot experiment consisted in 9 soil treatments (% w/w): untreated Cu-contaminated soil (Unt); Unt soil amended respectively with compost (5%, C), iron grit (1%, Z), pine bark-derived biochar (1%, PB), poultry-manure-derived biochar (1%, AB), PB or AB+C (5%, PBC and ABC), and PB or AB+Z (1%, PBZ and ABZ). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. In the SPW, all amendments decreased the Cu(2+) concentration, but total Cu concentration increased in all AB-amended soils due to high dissolved organic matter (DOM) concentration. No treatment improved root and shoot DW yields, which even decreased in the ABC and ABZ treatments. The PBZ treatment decreased total Cu concentration in the SPW while reducing the gap with common values for root and shoot yields of dwarf bean plants. A field trial is underway before any recommendation for the PB-based treatments.


Assuntos
Carvão Vegetal/análise , Compostagem , Cobre/toxicidade , Ferro/química , Phaseolus/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Biodegradação Ambiental , França , Phaseolus/química , Phaseolus/crescimento & desenvolvimento , Solubilidade
15.
Chemosphere ; 156: 150-162, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27174828

RESUMO

BACKGROUND AND AIMS: Rapeseed (Brassica napus L.) is a Cd/Zn-accumulator whereas soil conditioners such as biochars may immobilize trace elements. These potentially complementary soil remediation options were trialed, singly and in combination, in a pot experiment with a metal(loid)-contaminated technosol. METHODS: The technosol [total content in mg kg(-1) Zn 6089, Cd 9.4, Cu 110, and Pb 956] was either amended (2% w/w) or not with a poultry manure-derived biochar. Rapeseed was cultivated for both soil treatments during 24 weeks up to harvest under controlled conditions. RESULTS: Biochar incorporation into the technosol promoted the As, Cd, Cu, Mo, Ni, Pb and Zn solubility. It decreased foliar B, Cu and Mo concentrations, and Mo concentration in stems, pericarps and seeds. But, it did not impact neither the biomass of aerial rapeseed parts (except a decrease for seeds), nor their C (except a decrease for stems), seed fatty acid, seed starch and soluble sugar contents, and antioxidant capacity in both leaves and seeds. Biochar amendment increased the phytoextraction by aerial plant parts for K, P, and S, reduced it for N, Ca, B, Mo, Ni and Se, whereas it remained steady for Mg, Zn, Fe, Mn, Cu, Cd and Co. CONCLUSIONS: The biochar incorporation into this technosol did not promote Cd, Cu and Zn phytoextraction by rapeseed and its potential oilseed production, but increased the solubility of several metal(loid)s. Here Zn and Cd concentrations in the soil pore water were decreased by rapeseed, showing the feasibility to strip available soil Zn and Cd in combination with seed production.


Assuntos
Compostos de Amônio/toxicidade , Biodegradação Ambiental , Brassica napus/crescimento & desenvolvimento , Carvão Vegetal/química , Sementes/química , Poluentes do Solo/toxicidade , Oligoelementos/metabolismo , Disponibilidade Biológica , Biomassa , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Esterco , Metais/metabolismo , Fotoquímica , Poluentes do Solo/análise
16.
Environ Sci Pollut Res Int ; 23(4): 3120-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26174982

RESUMO

Medicago sativa was cultivated at a former harbor facility near Bordeaux (France) to phytomanage a soil contaminated by trace elements (TE) and polycyclic aromatic hydrocarbons (PAH). In parallel, a biotest with Phaseolus vulgaris was carried out on potted soils from 18 sub-sites to assess their phytotoxicity. Total soil TE and PAH concentrations, TE concentrations in the soil pore water, the foliar ionome of M. sativa (at the end of the first growth season) and of Populus nigra growing in situ, the root and shoot biomass and the foliar ionome of P. vulgaris were determined. Despite high total soil TE, soluble TE concentrations were generally low, mainly due to alkaline soil pH (7.8-8.6). Shoot dry weight (DW) yield and foliar ionome of P. vulgaris did not reflect the soil contamination, but its root DW yield decreased at highest soil TE and/or PAH concentrations. Foliar ionomes of M. sativa and P. nigra growing in situ were generally similar to the ones at uncontaminated sites. M. sativa contributed to bioavailable TE stripping by shoot removal (in g ha(-1) harvest(-1)): As 0.9, Cd 0.3, Cr 0.4, Cu 16.1, Ni 2.6, Pb 4, and Zn 134. After 1 year, 72 plant species were identified in the plant community across three subsets: (I) plant community developed on bare soil sowed with M. sativa; (II) plant community developed in unharvested plots dominated by grasses; and (III) plant community developed on unsowed bare soil. The shoot DW yield (in mg ha(-1) harvest(-1)) varied from 1.1 (subset I) to 6.9 (subset II). For subset III, the specific richness was the lowest in plots with the highest phytotoxicity for P. vulgaris.


Assuntos
Medicago sativa/efeitos dos fármacos , Phaseolus/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/análise , Populus/efeitos dos fármacos , Poluentes do Solo/análise , Oligoelementos/análise , Biodegradação Ambiental , Biomassa , Monitoramento Ambiental/métodos , França , Medicago sativa/crescimento & desenvolvimento , Phaseolus/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/química , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Estações do Ano , Solo , Urbanização
17.
Sci Total Environ ; 496: 510-522, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25108253

RESUMO

During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo/análise , Testes de Toxicidade/métodos , Oligoelementos/análise , Biodegradação Ambiental , Ecotoxicologia , França , Medição de Risco/métodos , Solo , Poluentes do Solo/toxicidade , Oligoelementos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...