Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 3(4): 1029-1046, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36133299

RESUMO

Magnetite nanoparticles are one of the most promising ferrofluids for hyperthermia applications due to the combination of unique physicochemical and magnetic properties. In this study, we designed and produced superparamagnetic ferrofluids composed of magnetite (Fe3O4, MION) and cobalt-doped magnetite (Co x -MION, x = 3, 5, and 10% mol of cobalt) nanoconjugates through an eco-friendly aqueous method using carboxymethylcellulose (CMC) as the biocompatible macromolecular ligand. The effect of the gradual increase of cobalt content in Fe3O4 nanocolloids was investigated in-depth using XRD, XRF, XPS, FTIR, DLS, zeta potential, EMR, and VSM analyses. Additionally, the cytotoxicity of these nanoconjugates and their ability to cause cancer cell death through heat induction were evaluated by MTT assays in vitro. The results demonstrated that the progressive substitution of Co in the magnetite host material significantly affected the magnetic anisotropy properties of the ferrofluids. Therefore, Co-doped ferrite (Co x Fe(3-x)O4) nanoconjugates enhanced the cell-killing activities in magnetic hyperthermia experiments under alternating magnetic field performed with human brain cancer cells (U87). On the other hand, the Co-doping process retained the pristine inverse spinel crystalline structure of MIONs, and it has not significantly altered the average nanoparticle size (ca.∼7.1 ± 1.6 nm). Thus, the incorporation of cobalt into magnetite-polymer nanostructures may constitute a smart strategy for tuning their magnetothermal capability towards cancer therapy by heat generation.

2.
Int J Biol Macromol ; 132: 677-691, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951776

RESUMO

Novel core-shell superparamagnetic nanofluids composed of magnetic iron oxide (Fe3O4, MION) and cobalt-doped (CoxFe3-xO4, Co-MION) nanoparticles functionalized with carboxymethyl cellulose (CMC) ligands were designed and produced via green colloidal aqueous process. The effect of the degree of substitution (DS = 0.7 and 1.2) and molecular mass (Mw) of CMC and cobalt doping concentration on the physicochemical and magnetic properties of these nanoconjugates were comprehensively investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, transmission electron microscopy (TEM) with selected area electron diffraction, X-ray fluorescence, dynamic light scattering (DLS), zeta potential (ZP) analysis, vibrating sample magnetometry (VSM) and electron paramagnetic resonance spectroscopy (EPR). The results demonstrated the effect of concentration of carboxylate groups and Mw of CMC on the hydrodynamic dimension, zeta potential, and generated heat by magnetic hyperthermia of MION nanoconjugates. Co-doping of MION showed significant alteration of the electrostatic balance of charges of the nanoconjugates interpreted as effect of surface interactions. Moreover, the VSM and EPR results proved the superparamagnetic properties of these nanocolloids, which were affected by the presence of CMC and Co-doping of iron oxide nanoparticles. These magnetic nanohybrids behaved as nanoheaters for killing brain cancer cells in vitro with prospective future applications in oncology and nanomedicine.


Assuntos
Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/farmacologia , Nanopartículas de Magnetita/química , Nanocompostos/química , Carboximetilcelulose Sódica/síntese química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Fenômenos Magnéticos , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...