Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 157(10): 104302, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36109242

RESUMO

Kasha's rule generally holds true for solid-state molecular systems, where the rates of internal conversion and vibrational relaxation are sufficiently higher than the luminescence rate. In contrast, in systems where plasmons and matter interact strongly, the luminescence rate is significantly enhanced, leading to the emergence of luminescence that does not obey Kasha's rule. In this work, we investigate the anti-Kasha emissions of single molecules, free-base and magnesium naphthalocyanine (H2Nc and MgNc), in a plasmonic nanocavity formed between the tip of a scanning tunneling microscope (STM) and metal substrate. A narrow-line tunable laser was employed to precisely reveal the excited-state levels of a single molecule located under the tip and to selectively excite it into a specific excited state, followed by obtaining a STM-photoluminescence (STM-PL) spectrum to reveal the energy relaxation from the state. The excitation to higher-lying states of H2Nc caused various changes in the emission spectrum, such as broadening and the appearance of new peaks, implying the breakdown of Kasha's rule. These observations indicate emissions from the vibrationally excited states in the first singlet excited state (S1) and second singlet excited state (S2), as well as internal conversion from S2 to S1. Moreover, we obtained direct evidence of electronic and vibronic transitions from the vibrationally excited states, from the STM-PL measurements of MgNc. The results obtained herein shed light on the energy dynamics of molecular systems under a plasmonic field and highlight the possibility of obtaining various energy-converting functions using anti-Kasha processes.

2.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684350

RESUMO

Food authenticity has become increasingly important as a result of food adulteration. To identify the authenticity of sweet potato starch noodles, the ladder-shape melting temperature isothermal amplification (LMTIA) method of determining cassava (Manihot esculenta Crantz) DNA in sweet potato starch noodles was used. A set of primers targeted at the internal transcription spacer (ITS) of cassava was designed, genomic DNA was extracted, the LMTIA reaction temperature was optimized, and the specificity of the primer was verified with the genomic DNAs of cassava, sweet potato (Ipomoea batatas L.), Solanum tuberosum L., Zea mays L., Vigna radiate L., Triticum aestivum L., and Glycine max (L.) Merr. The sensitivity with the serially diluted genomic DNA of cassava and the suitability for the DNA extracted from sweet potato starch adulterated with cassava starch were tested. The LMTIA assay for identifying the cassava component in sweet potato starch noodles was established. At the optimal temperature of 52 °C, the primers could specifically distinguish a 0.01% (w/w) cassava component added to sweet potato starch. Additionally, the LMTIA method was applied to the cassava DNA detection of 31 sweet potato starch noodle samples purchased from retail markets in China. Of these, 14 samples were positive. The LMTIA assay could be a reliable method for the rapid detection of cassava components in sweet potato starch noodles, to protect the rights of consumers and to regulate the sale market order of starch noodles.


Assuntos
Ipomoea batatas , Manihot , Ipomoea batatas/genética , Manihot/genética , Amido , Temperatura , Verduras
3.
J Am Chem Soc ; 140(51): 17857-17861, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30507181

RESUMO

We report synthesis and characterization of near-infrared (NIR)-absorbing/emitting Thiele's hydrocarbon derivatives, in which four aryl groups are bridged to a quinodimethane skeleton. The quinoid structure of the bridged-tetra-aryl- p-quinodimethanes (BTAQs) was confirmed by spectroscopic, X-ray crystallographic, and computational methods. Although quinodimethane derivatives with a small HOMO-LUMO energy gap often exhibit biradical character, BTAQs showed no biradical character. Instead, they exhibited two-step near-infrared electrochromism. The donor/acceptor properties of the aryl groups were found to play a key role in the unique properties of BTAQs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...