Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38995761

RESUMO

BACKGROUND: Chest X-rays (CXR) are widely used to facilitate the diagnosis and treatment of critically ill and emergency patients in clinical practice. Accurate hemi-diaphragm detection based on postero-anterior (P-A) CXR images is crucial for the diaphragm function assessment of critically ill and emergency patients to provide precision healthcare for these vulnerable populations. OBJECTIVE: Therefore, an effective and accurate hemi-diaphragm detection method for P-A CXR images is urgently developed to assess these vulnerable populations' diaphragm function. METHODS: Based on the above, this paper proposes an effective hemi-diaphragm detection method for P-A CXR images based on the convolutional neural network (CNN) and graphics. First, we develop a robust and standard CNN model of pathological lungs trained by human P-A CXR images of normal and abnormal cases with multiple lung diseases to extract lung fields from P-A CXR images. Second, we propose a novel localization method of the cardiophrenic angle based on the two-dimensional projection morphology of the left and right lungs by graphics for detecting the hemi-diaphragm. RESULTS: The mean errors of the four key hemi-diaphragm points in the lung field mask images abstracted from static P-A CXR images based on five different segmentation models are 9.05, 7.19, 7.92, 7.27, and 6.73 pixels, respectively. Besides, the results also show that the mean errors of these four key hemi-diaphragm points in the lung field mask images abstracted from dynamic P-A CXR images based on these segmentation models are 5.50, 7.07, 4.43, 4.74, and 6.24 pixels,respectively. CONCLUSION: Our proposed hemi-diaphragm detection method can effectively perform hemi-diaphragm detection and may become an effective tool to assess these vulnerable populations' diaphragm function for precision healthcare.

2.
Med Phys ; 48(9): 5259-5271, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34252216

RESUMO

PURPOSE: Clinically, single radiotracer positron emission tomography (PET) imaging is a commonly used examination method; however, since each radioactive tracer reflects the information of only one kind of cell, it easily causes false negatives or false positives in disease diagnosis. Therefore, reasonably combining two or more radiotracers is recommended to improve the accuracy of diagnosis and the sensitivity and specificity of the disease when conditions permit. METHODS: This paper proposes incorporating 18 F-fluorodeoxyglucose (FDG) as a higher-quality PET image to guide the reconstruction of other lower-count 11 C-methionine (MET) PET datasets to compensate for the lower image quality by a popular kernel algorithm. Specifically, the FDG prior is needed to extract kernel features, and these features were used to build a kernel matrix using a k-nearest-neighbor (kNN) search for MET image reconstruction. We created a 2-D brain phantom to validate the proposed method by simulating sinogram data containing Poisson random noise and quantitatively compared the performance of the proposed FDG-guided kernelized expectation maximization (KEM) method with the performance of Gaussian and non-local means (NLM) smoothed maximum likelihood expectation maximization (MLEM), MR-guided KEM, and multi-guided-S KEM algorithms. Mismatch experiments between FDG/MR and MET data were also carried out to investigate the outcomes of possible clinical situations. RESULTS: In the simulation study, the proposed method outperformed the other algorithms by at least 3.11% in the signal-to-noise ratio (SNR) and 0.68% in the contrast recovery coefficient (CRC), and it reduced the mean absolute error (MAE) by 8.07%. Regarding the tumor in the reconstructed image, the proposed method contained more pathological information. Furthermore, the proposed method was still superior to the MR-guided KEM method in the mismatch experiments. CONCLUSIONS: The proposed FDG-guided KEM algorithm can effectively utilize and compensate for the tissue metabolism information obtained from dual-tracer PET to maximize the advantages of PET imaging.


Assuntos
Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador , Algoritmos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons , Razão Sinal-Ruído
3.
Front Comput Neurosci ; 15: 819840, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069162

RESUMO

Purpose: This study aims to explore the impact of adding texture features in dynamic positron emission tomography (PET) reconstruction of imaging results. Methods: We have improved a reconstruction method that combines radiological dual texture features. In this method, multiple short time frames are added to obtain composite frames, and the image reconstructed by composite frames is used as the prior image. We extract texture features from prior images by using the gray level-gradient cooccurrence matrix (GGCM) and gray-level run length matrix (GLRLM). The prior information contains the intensity of the prior image, the inverse difference moment of the GGCM and the long-run low gray-level emphasis of the GLRLM. Results: The computer simulation results show that, compared with the traditional maximum likelihood, the proposed method obtains a higher signal-to-noise ratio (SNR) in the image obtained by dynamic PET reconstruction. Compared with similar methods, the proposed algorithm has a better normalized mean squared error (NMSE) and contrast recovery coefficient (CRC) at the tumor in the reconstructed image. Simulation studies on clinical patient images show that this method is also more accurate for reconstructing high-uptake lesions. Conclusion: By adding texture features to dynamic PET reconstruction, the reconstructed images are more accurate at the tumor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA