Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 111(5): 1035-43, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27602731

RESUMO

Bacteria have remarkably robust cell shape control mechanisms. For example, cell diameter only varies by a few percent across a given population. The bacterial actin homolog, MreB, is necessary for establishment and maintenance of rod shape although the detailed properties of MreB that are important for shape control remained unknown. In this study, we perturb MreB in two ways: by treating cells with the polymerization-inhibiting drug A22 and by creating point mutants in mreB. These perturbations modify the steady-state diameter of cells over a wide range, from 790 ± 30 nm to 1700 ± 20 nm. To determine which properties of MreB are important for diameter control, we correlated structural characteristics of fluorescently tagged MreB polymers with cell diameter by simultaneously analyzing three-dimensional images of MreB and cell shape. Our results indicate that the helical pitch angle of MreB inversely correlates with the cell diameter of Escherichia coli. Other correlations between MreB and cell diameter are not found to be significant. These results demonstrate that the physical properties of MreB filaments are important for shape control and support a model in which MreB organizes the cell wall growth machinery to produce a chiral cell wall structure and dictate cell diameter.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Microscopia de Fluorescência , Modelos Biológicos , Mutação
2.
Proc Natl Acad Sci U S A ; 112(40): 12510-5, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26396257

RESUMO

The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress.


Assuntos
Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Parede Celular/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Mutação , Ligação Proteica , Rotação , Imagem com Lapso de Tempo/métodos
3.
Mol Microbiol ; 93(5): 883-96, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24995493

RESUMO

In virtually all bacteria, the cell wall is crucial for mechanical integrity and for determining cell shape. Escherichia coli's rod-like shape is maintained via the spatiotemporal patterning of cell-wall synthesis by the actin homologue MreB. Here, we transiently inhibited cell-wall synthesis in E. coli to generate cell-wall-deficient, spherical L-forms, and found that they robustly reverted to a rod-like shape within several generations after inhibition cessation. The chemical composition of the cell wall remained essentially unchanged during this process, as indicated by liquid chromatography. Throughout reversion, MreB localized to inwardly curved regions of the cell, and fluorescent cell wall labelling revealed that MreB targets synthesis to those regions. When exposed to the MreB inhibitor A22, reverting cells regrew a cell wall but failed to recover a rod-like shape. Our results suggest that MreB provides the geometric measure that allows E. coli to actively establish and regulate its morphology.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Formas L/crescimento & desenvolvimento , Formas L/genética , Parede Celular/genética , Parede Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Formas L/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(11): E1025-34, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550515

RESUMO

Cells typically maintain characteristic shapes, but the mechanisms of self-organization for robust morphological maintenance remain unclear in most systems. Precise regulation of rod-like shape in Escherichia coli cells requires the MreB actin-like cytoskeleton, but the mechanism by which MreB maintains rod-like shape is unknown. Here, we use time-lapse and 3D imaging coupled with computational analysis to map the growth, geometry, and cytoskeletal organization of single bacterial cells at subcellular resolution. Our results demonstrate that feedback between cell geometry and MreB localization maintains rod-like cell shape by targeting cell wall growth to regions of negative cell wall curvature. Pulse-chase labeling indicates that growth is heterogeneous and correlates spatially and temporally with MreB localization, whereas MreB inhibition results in more homogeneous growth, including growth in polar regions previously thought to be inert. Biophysical simulations establish that curvature feedback on the localization of cell wall growth is an effective mechanism for cell straightening and suggest that surface deformations caused by cell wall insertion could direct circumferential motion of MreB. Our work shows that MreB orchestrates persistent, heterogeneous growth at the subcellular scale, enabling robust, uniform growth at the cellular scale without requiring global organization.


Assuntos
Parede Celular/fisiologia , Citoesqueleto/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Morfogênese/fisiologia , Biofísica , Simulação por Computador , Citoesqueleto/fisiologia , Fluorescência , Imageamento Tridimensional , Modelos Biológicos , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA