Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(21): 9216-9223, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38747059

RESUMO

Potassium manganese fluoride phosphate, KMnPO4F, has been obtained through mild hydrothermal synthesis and characterized by scanning electron microscopy, microprobe analysis and X-ray diffraction. The compound possesses an orthorhombic symmetry and chiral space group P212121 with a = 4.7884(2), b = 9.0172(4), c = 9.5801(4) Å, and Z = 4. Its crystal structure is composed of Mn3+O4F square pyramids sharing vertices with PO4 tetrahedra. This anionic framework is neutralized by K+ cations. As the temperature decreases, a short-range correlation state (Tmax ∼ 35 K) of KMnPO4F is formed, followed by the establishment of antiferromagnetic (AFM) long-range order at TN = 25 K. The latter is marked by sharp λ-type anomalies in both Fisher's specific heat d(χ‖T)/dT and heat capacity Cp. Pulsed magnetic field measurements on the single crystals identify the a axis as the easy magnetic axis and reveal a spin-flop transition at µ0Hspin-flop = 19 T. Density functional theory indicates that in variance with the three-dimensional network of KMnPO4F, it is a two-dimensional Ising magnetic system represented by buckled layers of integer spins S = 2 of Mn3+ ions. The strongest AFM exchange interaction, J1 ∼ -13 K, couples Mn3+ ions into linear chains running along the a axis. The chains themselves are ferromagnetically connected (J3 ∼ -4 K) within the ab plane. The interplane AFM exchange interaction (J2 ∼ -1 K) is weak and frustrated.

2.
Angew Chem Int Ed Engl ; 63(3): e202316719, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38054955

RESUMO

A novel vanadium hydroxide-phosphate, NH4 VPO4 OH, was synthesized hydrothermally in V2 O5 -NH4 H2 PO4 -citric acid system at 230 °C. It was characterized by XRD, TG-DSC, SEM-EDX, FTIR and NMR spectroscopy. NH4 VPO4 OH is isostructural with NH4 GaPO4 OH and features edge-sharing chains of VO6 octahedra. These chains running along [010] direction of the unit cell are connected by phosphate tetrahedra to form infinite layers parallel to the (100) plane. Ammonium cations are embedded between the heteropolyhedral layers. According to the thermodynamic and NMR measurements supported by the first-principles calculations, NH4 VPO4 OH presents a rare case of Haldane spin system with spin S=1 based on V3+ ions.

3.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432380

RESUMO

Arrays of superconducting nanowires may be useful as elements of novel nanoelectronic devices. The superconducting properties of nanowires differ significantly from the properties of bulk structures. For instance, different vortex configurations of the magnetic field have previously been predicted for nanowires with different diameters. In the present study, arrays of parallel superconducting In nanowires with the diameters of 45 nm, 200 nm, and 550 nm-the same order of magnitude as coherence length ξ-were fabricated by templated electrodeposition. Values of magnetic moment M of the samples were measured as a function of magnetic field H and temperature T in axial and transverse fields. M(H) curves for the arrays of nanowires with 45 nm and 200 nm diameters are reversible, whereas magnetization curves for the array of nanowires with 550 nm diameter have several feature points and show a significant difference between increasing and decreasing field branches. Critical fields increase with a decrease in diameter, and the thinnest nanowires exceed bulk critical fields by 20 times. The qualitative change indicates that magnetic field configurations are different in the nanowires with different diameters. Variation of M(H) slope in small fields, heat capacity, and the magnetic field penetration depth with the temperature were measured. Superconductivity in In nanowires is proven to exist above the bulk critical temperature.

4.
Dalton Trans ; 49(47): 17368-17374, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33211032

RESUMO

Single crystals of dinickel diphosphate dihydrate, Ni2(H2O)2[P2O7], have been synthesized by a hydrothermal method. Its structure was refined in the monoclinic P21/n space group (unit cell parameters a = 6.2517(1) Å, b = 13.7892(3) Å, c = 7.2894(2) Å, ß = 94.507(2)°, V = 626.45(2) Å3, and Z = 4) based on low-temperature X-ray diffraction data until R- 0.016. Corrugated chains of NiO5(H2O) octahedra sharing edges are aligned in the [101[combining macron]] direction. They are linked into a three-dimensional framework through diphosphate groups and hydrogen bonds. A detailed crystal chemical analysis of the family Me2(H2O)2[X2O7] revealed correlations between the unit-cell parameters of the isotypic transition metal phosphates and arsenates, their structural features and the sizes of structure forming cations. Despite the isolation of the cis and trans edge-sharing infinite zigzag chains of Ni-centered octahedra from each other no pronounced low dimensionality is seen in the magnetic response of Ni2(H2O)2[P2O7]. The magnetic susceptibility χ evidences a short range correlation maximum at Tmax = 11.9 K accompanied by the onset of long-range magnetic order at TN = 9.4 K. Below TN, the title compound exhibits the features of an archetype three-dimensional easy-axis antiferromagnet which experiences a sequence of spin-flop and spin-flip phase transitions. Basing on specific heat Cp and magnetization M studies, the magnetic phase diagram of Ni2(H2O)2[P2O7] has been established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...