Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
J Med Imaging (Bellingham) ; 10(4): 044503, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37547812

RESUMO

Purpose: Deep learning (DL) models have received much attention lately for their ability to achieve expert-level performance on the accurate automated analysis of chest X-rays (CXRs). Recently available public CXR datasets include high resolution images, but state-of-the-art models are trained on reduced size images due to limitations on graphics processing unit memory and training time. As computing hardware continues to advance, it has become feasible to train deep convolutional neural networks on high-resolution images without sacrificing detail by downscaling. This study examines the effect of increased resolution on CXR classification performance. Approach: We used the publicly available MIMIC-CXR-JPG dataset, comprising 377,110 high resolution CXR images for this study. We applied image downscaling from native resolution to 2048×2048 pixels, 1024×1024 pixels, 512×512 pixels, and 256×256 pixels and then we used the DenseNet121 and EfficientNet-B4 DL models to evaluate clinical task performance using these four downscaled image resolutions. Results: We find that while some clinical findings are more reliably labeled using high resolutions, many other findings are actually labeled better using downscaled inputs. We qualitatively verify that tasks requiring a large receptive field are better suited to downscaled low resolution input images, by inspecting effective receptive fields and class activation maps of trained models. Finally, we show that stacking an ensemble across resolutions outperforms each individual learner at all input resolutions while providing interpretable scale weights, indicating that diverse information is extracted across resolutions. Conclusions: This study suggests that instead of focusing solely on the finest image resolutions, multi-scale features should be emphasized for information extraction from high-resolution CXRs.

2.
Proc Natl Acad Sci U S A ; 120(29): e2301302120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428935

RESUMO

Carbapenemase and extended ß-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Klebsiella pneumoniae/genética , Lipopolissacarídeos , Antígenos O , Klebsiella , Western Blotting , Infecções por Klebsiella/prevenção & controle
3.
ACS Appl Mater Interfaces ; 15(30): 36856-36865, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37474250

RESUMO

Moving toward a future of efficient, accessible, and less carbon-reliant energy devices has been at the forefront of energy research innovations for the past 30 years. Metal-halide perovskite (MHP) thin films have gained significant attention due to their flexibility of device applications and tunable capabilities for improving power conversion efficiency. Serving as a gateway to optimize device performance, consideration must be given to chemical synthesis processing techniques. Therefore, how does common substrate processing techniques influence the behavior of MHP phenomena such as ion migration and strain? Here, we demonstrate how a hybrid approach of chemical bath deposition (CBD) and nanoparticle SnO2 substrate processing significantly improves the performance of (FAPbI3)0.97(MAPbBr3)0.03 by reducing micro-strain in the SnO2 lattice, allowing distribution of K+ from K-Cl treatment of substrates to passivate defects formed at the interface and produce higher current in light and dark environments. X-ray diffraction reveals differences in lattice strain behavior with respect to SnO2 substrate processing methods. Through use of conductive atomic force microscopy (c-AFM), conductivity is measured spatially with MHP morphology, showing higher generation of current in both light and dark conditions for films with hybrid processing. Additionally, time-of-flight secondary ionization mass spectrometry (ToF-SIMS) observed the distribution of K+ at the perovskite/SnO2 interface, indicating K+ passivation of defects to improve the power conversion efficiency (PCE) and device stability. We show how understanding the role of ion distribution at the SnO2 and perovskite interface can help reduce the creating of defects and promote a more efficient MHP device.

4.
Microorganisms ; 11(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37317317

RESUMO

Soil microbial and enzyme activities are closely related to the spatial variability of soil environmental conditions at the microscale (µm-mm). The origin and localization of the enzymes are somewhat neglected when the measured activity is used to evaluate specific soil functions. The activity of four hydrolytic enzymes (ß-glucosidase, Cellobiohydrolase, Chitinase, Xylanase) and microbial diversity based on community-level physiological profiling were determined in samples of arable and native Phaeozems with increasing physical impact to soil solids. The level of impact on the soil solids had a significant effect on enzyme activity and depended on both the enzyme type and soil land use. The highest proportion of the activity of Xylanase and Cellobiohydrolase of arable Phaeozem was determined at the dispersion energy in the range of 450-650 J·mL-1 and was associated with the primary soil particles' hierarchy level. The highest proportions of ß-glucosidase and Chitinase activities were determined for forest Phaeozem after applying energies lower than 150 J·mL-1 and characterizing the level of soil microaggregates. The increased activity of Xylanase and Cellobiohydrolase in primary soil particles of arable soil compared to those in forest soil might be a reflection of the substrates being unavailable to decomposition, leading to enzyme accumulation on the solid surface. For the Phaeozems, the lower the level of soil microstructure organization, the greater the differences observed between soils of different land use type, i.e., microbial communities, associated with lower microstructure levels, were more specific to land use type.

5.
Nat Microbiol ; 8(6): 1026-1038, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127701

RESUMO

Treating multidrug-resistant infections has increasingly relied on last-resort antibiotics, including polymyxins, for example colistin. As polymyxins are given routinely, the prevalence of their resistance is on the rise and increases mortality rates of sepsis patients. The global dissemination of plasmid-borne colistin resistance, driven by the emergence of mcr-1, threatens to diminish the therapeutic utility of polymyxins from an already shrinking antibiotic arsenal. Restoring sensitivity to polymyxins using combination therapy with sensitizing drugs is a promising approach to reviving its clinical utility. Here we describe the ability of the biotin biosynthesis inhibitor, MAC13772, to synergize with colistin exclusively against colistin-resistant bacteria. MAC13772 indirectly disrupts fatty acid synthesis (FAS) and restores sensitivity to the last-resort antibiotic, colistin. Accordingly, we found that combinations of colistin and other FAS inhibitors, cerulenin, triclosan and Debio1452-NH3, had broad potential against both chromosomal and plasmid-mediated colistin resistance in chequerboard and lysis assays. Furthermore, combination therapy with colistin and the clinically relevant FabI inhibitor, Debio1452-NH3, showed efficacy against mcr-1 positive Klebsiella pneumoniae and colistin-resistant Escherichia coli systemic infections in mice. Using chemical genomics, lipidomics and transcriptomics, we explored the mechanism of the interaction. We propose that inhibiting FAS restores colistin sensitivity by depleting lipid synthesis, leading to changes in phospholipid composition. In all, this work reveals a surprising link between FAS and colistin resistance.


Assuntos
Colistina , Infecções por Escherichia coli , Animais , Camundongos , Colistina/farmacologia , Colistina/uso terapêutico , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Polimixinas/farmacologia , Polimixinas/uso terapêutico , Infecções por Escherichia coli/microbiologia , Ácidos Graxos/farmacologia
6.
mBio ; 14(3): e0080023, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37140436

RESUMO

Klebsiella pneumoniae is a leading cause of nosocomial infections, including pneumonia, bacteremia, and urinary tract infections. Treatment options are increasingly restricted by the high prevalence of resistance to frontline antibiotics, including carbapenems, and the recently identified plasmid-conferred colistin resistance. The classical pathotype (cKp) is responsible for most of the nosocomial infections observed globally, and these isolates are often multidrug resistant. The hypervirulent pathotype (hvKp) is a primary pathogen capable of causing community-acquired infections in immunocompetent hosts. The hypermucoviscosity (HMV) phenotype is strongly associated with the increased virulence of hvKp isolates. Recent studies demonstrated that HMV requires capsule (CPS) synthesis and the small protein RmpD but is not dependent on the increased amount of capsule associated with hvKp. Here, we identified the structure of the capsular and extracellular polysaccharide isolated from hvKp strain KPPR1S (serotype K2) with and without RmpD. We found that the polymer repeat unit structure is the same in both strains and that it is identical to the K2 capsule. However, the chain length of CPS produced by strains expressing rmpD demonstrates more uniform length. This property was reconstituted in CPS from Escherichia coli isolates that possess the same CPS biosynthesis pathway as K. pneumoniae but naturally lack rmpD. Furthermore, we demonstrate that RmpD binds Wzc, a conserved capsule biosynthesis protein required for CPS polymerization and export. Based on these observations, we present a model for how the interaction of RmpD with Wzc could impact CPS chain length and HMV. IMPORTANCE Infections caused by Klebsiella pneumoniae continue to be a global public health threat; the treatment of these infections is complicated by the high frequency of multidrug resistance. K. pneumoniae produces a polysaccharide capsule required for virulence. Hypervirulent isolates also have a hypermucoviscous (HMV) phenotype that increases virulence, and we recently demonstrated that a horizontally acquired gene, rmpD, is required for HMV and hypervirulence but that the identity of the polymeric product(s) in HMV isolates is uncertain. Here, we demonstrate that RmpD regulates capsule chain length and interacts with Wzc, a part of the capsule polymerization and export machinery shared by many pathogens. We further show that RmpD confers HMV and regulates capsule chain length in a heterologous host (E. coli). As Wzc is a conserved protein found in many pathogens, it is possible that RmpD-mediated HMV and increased virulence may not be restricted to K. pneumoniae.


Assuntos
Infecção Hospitalar , Infecções por Klebsiella , Humanos , Escherichia coli , Virulência/genética , Fatores de Virulência/genética , Klebsiella pneumoniae , Antibacterianos , Polissacarídeos , Infecções por Klebsiella/epidemiologia
7.
J Biol Chem ; 299(5): 104609, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924942

RESUMO

KpsC is a dual-module glycosyltransferase (GT) essential for "group 2" capsular polysaccharide biosynthesis in Escherichia coli and other Gram-negative pathogens. Capsules are vital virulence determinants in high-profile pathogens, making KpsC a viable target for intervention with small-molecule therapeutic inhibitors. Inhibitor development can be facilitated by understanding the mechanism of the target enzyme. Two separate GT modules in KpsC transfer 3-deoxy-ß-d-manno-oct-2-ulosonic acid (ß-Kdo) from cytidine-5'-monophospho-ß-Kdo donor to a glycolipid acceptor. The N-terminal and C-terminal modules add alternating Kdo residues with ß-(2→4) and ß-(2→7) linkages, respectively, generating a conserved oligosaccharide core that is further glycosylated to produce diverse capsule structures. KpsC is a retaining GT, which retains the donor anomeric carbon stereochemistry. Retaining GTs typically use an SNi (substitution nucleophilic internal return) mechanism, but recent studies with WbbB, a retaining ß-Kdo GT distantly related to KpsC, strongly suggest that this enzyme uses an alternative double-displacement mechanism. Based on the formation of covalent adducts with Kdo identified here by mass spectrometry and X-ray crystallography, we determined that catalytically important active site residues are conserved in WbbB and KpsC, suggesting a shared double-displacement mechanism. Additional crystal structures and biochemical experiments revealed the acceptor binding mode of the ß-(2→4)-Kdo transferase module and demonstrated that acceptor recognition (and therefore linkage specificity) is conferred solely by the N-terminal α/ß domain of each GT module. Finally, an Alphafold model provided insight into organization of the modules and a C-terminal membrane-anchoring region. Altogether, we identified key structural and mechanistic elements providing a foundation for targeting KpsC.


Assuntos
Cápsulas Bacterianas , Glicosiltransferases , Cápsulas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicolipídeos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Lipopolissacarídeos/metabolismo , Açúcares Ácidos/metabolismo , Transferases/metabolismo , Polissacarídeos Bacterianos/metabolismo
8.
J Am Soc Mass Spectrom ; 34(2): 227-235, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625762

RESUMO

Prostate cancer is one of the most common cancers globally and is the second most common cancer in the male population in the US. Here we develop a study based on correlating the hematoxylin and eosin (H&E)-stained biopsy data with MALDI mass-spectrometric imaging data of the corresponding tissue to determine the cancerous regions and their unique chemical signatures and variations of the predicted regions with original pathological annotations. We obtain features from high-resolution optical micrographs of whole slide H&E stained data through deep learning and spatially register them with mass spectrometry imaging (MSI) data to correlate the chemical signature with the tissue anatomy of the data. We then use the learned correlation to predict prostate cancer from observed H&E images using trained coregistered MSI data. This multimodal approach can predict cancerous regions with ∼80% accuracy, which indicates a correlation between optical H&E features and chemical information found in MSI. We show that such paired multimodal data can be used for training feature extraction networks on H&E data which bypasses the need to acquire expensive MSI data and eliminates the need for manual annotation saving valuable time. Two chemical biomarkers were also found to be predicting the ground truth cancerous regions. This study shows promise in generating improved patient treatment trajectories by predicting prostate cancer directly from readily available H&E-stained biopsy images aided by coregistered MSI data.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
J Biomed Mater Res B Appl Biomater ; 111(4): 912-922, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36462210

RESUMO

Total joint arthroplasty is one of the most common surgeries in the United States, with almost a million procedures performed annually. Periprosthetic joint infections (PJI) remain the most devastating complications associated with total joint replacement. Effective antibacterial prophylaxis after primary arthroplasty could substantially reduce incidence rate of PJI. In the present study we propose to provide post-arthroplasty prophylaxis via dual-analgesic loaded ultra-high molecular weight polyethylene (UHMWPE). Our approach is based on previous studies that showed pronounced antibacterial activity of analgesic- and NSAID-loaded UHMWPE against Staphylococci. Here, we prepared bupivacaine/tolfenamic acid-loaded UHMWPE and assessed its antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis. Dual-drug loaded UHMWPE yielded an additional 1-2 log reduction of bacteria, when compared with single-drug loaded UHMWPE. Analysis of the drug elution kinetics suggested that the observed increase in antibacterial activity is due to the increased tolfenamic acid elution from dual-drug loaded UHMWPE. We showed that the increased fractal dimension of the drug domains in UHMWPE could be associated with increased drug elution, leading to higher antibacterial activity. Dual-analgesic loaded UHMWPE proposed here can be used as part of multi-modal antibacterial prophylaxis and promises substantial reduction in post-arthroplasty mortality and morbidity.


Assuntos
Artroplastia de Substituição , Staphylococcus , Antibacterianos/farmacologia , Polietilenos/farmacologia , Analgésicos
11.
Nat Commun ; 13(1): 6277, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271007

RESUMO

WbbB, a lipopolysaccharide O-antigen synthesis enzyme from Raoultella terrigena, contains an N-terminal glycosyltransferase domain with a highly modified architecture that adds a terminal ß-Kdo (3-deoxy-D-manno-oct-2-ulosonic acid) residue to the O-antigen saccharide, with retention of stereochemistry. We show, using mass spectrometry, that WbbB forms a covalent adduct between the catalytic nucleophile, Asp232, and Kdo. We also determine X-ray structures for the CMP-ß-Kdo donor complex, for Kdo-adducts with D232N and D232C WbbB variants, for a synthetic disaccharide acceptor complex, and for a ternary complex with both a Kdo-adduct and the acceptor. Together, these structures show that the enzyme-linked Asp232-Kdo adduct rotates to reposition the Kdo into a second sub-site, which then transfers Kdo to the acceptor. Retaining glycosyltransferases were thought to use only the front-side SNi substitution mechanism; here we show that retaining glycosyltransferases can also potentially use double-displacement mechanisms, but incorporating an additional catalytic subsite requires rearrangement of the protein's architecture.


Assuntos
Glicosiltransferases , Lipopolissacarídeos , Glicosiltransferases/genética , Lipopolissacarídeos/química , Antígenos O , Monofosfato de Citidina , Dissacarídeos
12.
J Am Med Inform Assoc ; 29(10): 1737-1743, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35920306

RESUMO

The predictive modeling literature for biomedical applications is dominated by biostatistical methods for survival analysis, and more recently some out of the box machine learning approaches. In this article, we show a presentation of a machine learning method appropriate for time-to-event modeling in the area of prostate cancer long-term disease progression. Using XGBoost adapted to long-term disease progression, we developed a predictive model for 118 788 patients with localized prostate cancer at diagnosis from the Department of Veterans Affairs (VA). Our model accounted for patient censoring. Harrell's c-index for our model using only features available at the time of diagnosis was 0.757 95% confidence interval [0.756, 0.757]. Our results show that machine learning methods like XGBoost can be adapted to use accelerated failure time (AFT) with censoring to model long-term risk of disease progression. The long median survival justifies and requires censoring. Overall, we show that an existing machine learning approach can be used for AFT outcome modeling in prostate cancer, and more generally for other chronic diseases with long observation times.


Assuntos
Pesquisa Biomédica , Neoplasias da Próstata , Progressão da Doença , Humanos , Aprendizado de Máquina , Masculino , Neoplasias da Próstata/diagnóstico , Análise de Sobrevida
13.
ACS Appl Mater Interfaces ; 14(30): 35157-35166, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35862906

RESUMO

Understanding the mechanism of antiwear (AW) tribofilm formation and how to tune surface chemistry to control functionality is essential for the development of the next generation of oil lubricants. In particular, understanding and optimizing early AW tribofilm formation can increase the energy efficiency of mechanical systems. However, the mechanism for how these films form is not well understood. The majority of prior work has focused on analyzing only end-of-test surfaces long after the film has formed. In this work, we develop an in situ multimodal chemical imaging methodology to directly visualize the early formation of AW films on steel surfaces. We investigate an oil formulation containing a phosphorus-based additive commonly used to protect surfaces from wear and fatigue processes in machine elements, such as gears, bearings, and sliding contacts. Using nanoscale multimodal chemical imaging on combined platforms of atomic force microscopy (AFM) coupled directly with in situ nano-infrared (nano-IR) spectroscopy, and further combined ex situ with time-of-flight secondary ion mass spectrometry (ToF-SIMS), we demonstrate a direct correlation between changes in friction and local surface chemistry. In these experiments, the AFM probe acts as a single asperity contact to generate the tribofilm as well as a tool to analyze it in situ as it is forming. To verify our in situ measurements, we compare these results to the ex situ ToF-SIMS of macroscale block-on-ring tribometer-formed samples. The understanding gained here on how AW films form and how film properties can be modified by tuning the chemistry of the additives will facilitate developing transmission fluids to meet increasing demands for vehicle performance and efficiency.

14.
Science ; 376(6594): 731-738, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549417

RESUMO

Continuous advancement in nonvolatile and morphotropic beyond-Moore electronic devices requires integration of ferroelectric and semiconductor materials. The emergence of hafnium oxide (HfO2)-based ferroelectrics that are compatible with atomic-layer deposition has opened interesting and promising avenues of research. However, the origins of ferroelectricity and pathways to controlling it in HfO2 are still mysterious. We demonstrate that local helium (He) implantation can activate ferroelectricity in these materials. The possible competing mechanisms, including He ion-induced molar volume changes, vacancy redistribution, vacancy generation, and activation of vacancy mobility, are analyzed. These findings both reveal the origins of ferroelectricity in this system and open pathways for nanoengineered binary ferroelectrics.

16.
Quant Plant Biol ; 3: e31, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37077971

RESUMO

Spatial heterogeneity in composition and organisation of the primary cell wall affects the mechanics of cellular morphogenesis. However, directly correlating cell wall composition, organisation and mechanics has been challenging. To overcome this barrier, we applied atomic force microscopy coupled with infrared (AFM-IR) spectroscopy to generate spatially correlated maps of chemical and mechanical properties for paraformaldehyde-fixed, intact Arabidopsis thaliana epidermal cell walls. AFM-IR spectra were deconvoluted by non-negative matrix factorisation (NMF) into a linear combination of IR spectral factors representing sets of chemical groups comprising different cell wall components. This approach enables quantification of chemical composition from IR spectral signatures and visualisation of chemical heterogeneity at nanometer resolution. Cross-correlation analysis of the spatial distribution of NMFs and mechanical properties suggests that the carbohydrate composition of cell wall junctions correlates with increased local stiffness. Together, our work establishes new methodology to use AFM-IR for the mechanochemical analysis of intact plant primary cell walls.

17.
J Biol Chem ; 298(1): 101486, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896394

RESUMO

Salmonella enterica serovar Typhi causes typhoid fever. It possesses a Vi antigen capsular polysaccharide coat that is important for virulence and is the basis of a current glycoconjugate vaccine. Vi antigen is also produced by environmental Bordetella isolates, while mammal-adapted Bordetella species (such as Bordetella bronchiseptica) produce a capsule of undetermined structure that cross-reacts with antibodies recognizing Vi antigen. The Vi antigen backbone is composed of poly-α-(1→4)-linked N-acetylgalactosaminuronic acid, modified with O-acetyl residues that are necessary for vaccine efficacy. Despite its biological and biotechnological importance, some central aspects of Vi antigen production are poorly understood. Here we demonstrate that TviE and TviD, two proteins encoded in the viaB (Vi antigen production) locus, interact and are the Vi antigen polymerase and O-acetyltransferase, respectively. Structural modeling and site-directed mutagenesis reveal that TviE is a GT4-family glycosyltransferase. While TviD has no identifiable homologs beyond Vi antigen systems in other bacteria, structural modeling suggests that it belongs to the large SGNH hydrolase family, which contains other O-acetyltransferases. Although TviD possesses an atypical catalytic triad, its O-acetyltransferase function was verified by antibody reactivity and 13C NMR data for tviD-mutant polysaccharide. The B. bronchiseptica genetic locus predicts a mode of synthesis distinct from classical S. enterica Vi antigen production, but which still involves TviD and TviE homologs that are both active in a reconstituted S. Typhi system. These findings provide new insight into Vi antigen production and foundational information for the glycoengineering of Vi antigen production in heterologous bacteria.


Assuntos
Polissacarídeos Bacterianos , Salmonella typhi , Febre Tifoide , Acetiltransferases/metabolismo , Animais , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Salmonella typhi/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia , Febre Tifoide/prevenção & controle , Virulência
18.
ACS Nano ; 15(12): 20391-20402, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34846843

RESUMO

The optoelectronic performance of organic-inorganic halide perovskite (OIHP)-based devices has been improved in recent years. Particularly, solar cells fabricated using mixed-cations and mixed-halides have outperformed their single-cation and single-halide counterparts. Yet, a systematic evaluation of the microstructural behavior of mixed perovskites is missing despite their known composition-dependent photoinstability. Here, we explore microstructural inhomogeneity in (FAPbI3)x(MAPbBr3)1-x using advanced scanning probe microscopy techniques. Contact potential difference (CPD) maps measured by Kelvin probe force microscopy show an increased fraction of grains exhibiting a low CPD with flat topography as MAPbBr3 concentration is increased. The higher portion of low CPD contributes to asymmetric CPD distribution curves. Chemical analysis reveals these grains being rich in MA, Pb, and I. The composition-dependent phase segregation upon illumination, reflected on the emergence of a low-energy peak emission in the original photoluminescence spectra, arises from the formation of such grains with flat topology. Bias-dependent piezo-response force microscopy measurements, in these grains, further confirm vigorous ion migration and cause a hysteretic piezo-response. Our results, therefore, provide insights into the microstructural evaluation of phase segregation and ion migration in OIHPs pointing toward process optimization as a mean to further enhance their optoelectronic performance.

19.
ACS Nano ; 15(5): 9017-9026, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33955732

RESUMO

Ion migration is one of the most debated mechanisms and credited with multiple observed phenomena and performance in metal halide perovskites (MHPs) semiconductor devices. However, to date, the migration of ions and their effects on MHPs are not still fully understood, largely due to a lack of direct observations of temporal ion migration. In this work, using direct observation of ion migration in-operando, we observe the hysteretic migration behavior of intrinsic ions (i.e., CH3NH3+ and I-) as well as reveal the migration behavior of CH3NH3+ decomposition ions. We find that CH3NH3+ decomposition products can be affected by light and accumulate at the interfaces under bias. These MHP decomposition products are tightly related to the device performance and stability. Complementary results of time-resolved Kelvin probe force microscopy (tr-KPFM) demonstrate a correlation between dynamics of these interfacial ions and charge carriers. Overall, we find that there are a number of mobile ions including CH3NH3+ decomposition products in MHPs that need to be taken into account when measuring MHP device responses (e.g., charge dynamics) and should be considered in future optimization studies of MHP semiconductor devices.

20.
ACS Nano ; 15(4): 7139-7148, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33770442

RESUMO

Metal halide perovskite (MHP) solar cells have attracted worldwide research interest. Although it has been well established that grain, grain boundary, and grain facet affect MHPs optoelectronic properties, less is known about subgrain structures. Recently, MHP twin stripes, a subgrain feature, have stimulated extensive discussion due to the potential for both beneficial and detrimental effects of ferroelectricity on optoelectronic properties. Connecting the ferroic behavior of twin stripes in MHPs with crystal orientation will be a vital step to understand the ferroic nature and the effects of twin stripes. In this work, we studied the crystallographic orientation and ferroic properties of CH3NH3PbI3 twin stripes, using electron backscatter diffraction (EBSD) and advanced piezoresponse force microscopy (PFM), respectively. Using EBSD, we discovered that the orientation relationship across the twin walls in CH3NH3PbI3 is a 90° rotation about ⟨1̅1̅0⟩, with the ⟨030⟩ and ⟨111⟩ directions parallel to the direction normal to the surface. By careful inspection of CH3NH3PbI3 PFM results including in-plane and out-of-plane PFM measurements, we demonstrate some nonferroelectric contributions to the PFM responses of this CH3NH3PbI3 sample, suggesting that the PFM signal in this CH3NH3PbI3 sample is affected by nonferroelectric and nonpiezoelectric forces. If there is piezoelectric response, it is below the detection sensitivity of our interferometric displacement sensor PFM (<0.615 pm/V). Overall, this work offers an integrated picture describing the crystallographic orientations and the origin of PFM signal of MHPs twin stripes, which is critical to understanding the ferroicity in MHPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...