Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1035032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755793

RESUMO

Background: Repolarization prolongation can be the earliest electrophysiological change in ischemia, but its role in arrhythmogenesis is unclear. The aim of the present study was to evaluate the early ischemic action potential duration (APD) prolongation concerning its causes, expression in ECG and association with early ischemic ventricular fibrillation (phase 1A VF). Methods: Coronary occlusion was induced in 18 anesthetized pigs, and standard 12 lead ECG along with epicardial electrograms were recorded. Local activation time (AT), end of repolarization time (RT), and activation-repolarization interval (ARIc) were determined as dV/dt minimum during QRS-complex, dV/dt maximum during T-wave, and rate-corrected RT-AT differences, respectively. Patch-clamp studies were done in enzymatically isolated porcine cardiomyocytes. IK(ATP) activation and Ito1 inhibition were tested as possible causes of the APD change. Results: During the initial period of ischemia, a total of 11 pigs demonstrated maximal ARIc prolongation >10 ms at 1 and/or 2.5 min of occlusion (8 and 6 cases at 1 and 2.5 min, respectively) followed by typical ischemic ARIc shortening. The maximal ARIc across all leads was associated with VF development (OR 1.024 95% CI 1.003-1.046, p = 0.025) and maximal rate-corrected QT interval (QTc) (B 0.562 95% CI 0.346-0.775, p < 0.001) in logistic and linear regression analyses, respectively. Phase 1A VF incidence was associated with maximal QTc at the 2.5 min of occlusion in ROC curve analysis (AUC 0.867, p = 0.028) with optimal cut-off 456 ms (sensitivity 1.00, specificity 0.778). The pigs having maximal QTc at 2.5 min more and less than 450 ms significantly differed in phase 1A VF incidence in Kaplan-Meier analysis (log-rank p = 0.007). In the patch-clamp experiments, 4-aminopyridine did not produce any effects on the APD; however, pinacidil activated IK(ATP) and caused a biphasic change in the APD with initial prolongation and subsequent shortening. Conclusion: The transiently prolonged repolarization during the initial period of acute ischemia was expressed in the prolongation of the maximal QTc interval in the body surface ECG and was associated with phase 1A VF. IK(ATP) activation in the isolated cardiomyocytes reproduced the biphasic repolarization dynamics observed in vivo, which suggests the probable role of IK(ATP) in early ischemic arrhythmogenesis.

2.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233101

RESUMO

In myocardial ischemia, melatonin confers antiarrhythmic action, but its electrocardiographic expression is unclear. We aimed to evaluate the effects of melatonin treatment on electrocardiogram (ECG) parameters reflecting major arrhythmogenic factors and to test the association of these parameters with ventricular fibrillation (VF) incidence. Myocardial ischemia was induced by 40 min coronary artery occlusion in 25 anesthetized pigs. After induction of ischemia, 12 and 13 animals were given melatonin or placebo, respectively. Twelve-lead ECGs were recorded and durations of QRS, QT, Tpeak-Tend intervals and extrasystolic burden were measured at baseline and during occlusion. During ischemia, VF episodes clustered into early and delayed phases (<10 and >20 min, respectively), and QRS duration was associated with VF incidence. QT interval and extrasystolic burden did not differ between the groups. The Tpeak-Tend interval was progressively prolonged, and the prolongation was less pronounced in the treated animals. QRS duration increased, demonstrating two maxima (5−10 and 25 min, respectively). In the melatonin group, the earlier maximum was blunted, and VF development in this period was prevented. Thus, acute melatonin treatment prevented excessive prolongation of the QRS and Tpeak-Tend intervals in the porcine myocardial infarction model, and QRS duration can be used for the assessment of antiarrhythmic action of melatonin.


Assuntos
Melatonina , Isquemia Miocárdica , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/complicações , Arritmias Cardíacas/tratamento farmacológico , Eletrocardiografia , Melatonina/farmacologia , Melatonina/uso terapêutico , Isquemia Miocárdica/complicações , Isquemia Miocárdica/tratamento farmacológico , Suínos , Fibrilação Ventricular/etiologia
3.
Front Physiol ; 11: 568021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101054

RESUMO

Background: Activation delay in ischemic myocardium has been found to contribute to J-wave appearance and to predict ventricular fibrillation (VF) in experimental myocardial infarction. However, the role of ischemia-related repolarization abnormalities in J-wave generation remains unclear. Objectives: The objective of our study was to assess a contribution of myocardial repolarization changes to J-wave generation in the body surface ECG and VF in a porcine acute myocardial infarction model. Methods: In 22 anesthetized pigs, myocardial ischemia was induced by occlusion of the left anterior descending coronary artery (LAD, n = 14) and right coronary artery (RCA, n = 8). Body surface ECGs were recorded simultaneously with intramyocardial unipolar electrograms led from flexible electrodes positioned across the left ventricular (LV) wall, interventricular septum (IVS), and right ventricular (RV) wall at apical, middle and basal levels of the ventricles (a total of 48 leads). Local activation times (ATs) and activation-repolarization intervals (ARIs, differences between dV/dt maximum during T-wave and dV/dt minimum during QRS) were measured. Results: J-waves appeared in left precordial leads (in 11 out of 14 animals with LAD occlusion) and right precordial leads (in six out of eight animals with RCA occlusion). During ischemic exposure, ATs prolonged, and the activation delay was associated with J-wave development (OR = 1.108 95% CI 1.072-1.144; p < 0.001) and VF incidence (OR = 1.039 95% CI 1.008-1.072; p = 0.015). ARIs shortened in the ischemic regions (in the IVS under LAD-occlusion and the lateral RV base under RCA-occlusion). The difference between maximal ARI in normal zones and ARI in the ischemic zones (ΔARI) was associated with J-wave appearance (OR = 1.025 95% CI 1.016-1.033, p < 0.001) independently of AT delay in multivariate logistic regression analysis. Conclusions: Both AT delay and increase of ΔARIs contributed to the development of J-wave in body surface ECG. However, only AT delay was associated with VF occurrence.

4.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396934

RESUMO

Antiarrhythmic effects of melatonin have been demonstrated ex vivo and in rodent models, but its action in a clinically relevant large mammalian model remains largely unknown. Objectives of the present study were to evaluate electrophysiological and antiarrhythmic effects of melatonin in a porcine model of acute myocardial infarction. Myocardial ischemia was induced by 40-min coronary occlusion in 25 anesthetized pigs. After ischemia onset, 12 animals received melatonin (4 mg/kg). 48 intramyocardial electrograms were recorded from left ventricular wall and interventricular septum (IVS). In each lead, activation time (AT) and repolarization time (RT) were determined. During ischemia, ATs and dispersion of repolarization (DOR = RTmax - RTmin) increased reaching maximal values by 3-5 and 20-25 min, respectively. Ventricular fibrillation (VF) incidence demonstrated no relations to redox state markers and was associated with increased DOR and delayed ATs (specifically, in an IVS base, an area adjacent to the ischemic zone) (p = 0.031). Melatonin prevented AT increase in the IVS base, (p < 0.001) precluding development of early VF (1-5 min, p = 0.016). VF occurrence in the delayed phase (17-40 min) where DOR was maximal was not modified by melatonin. Thus, melatonin-related enhancement of activation prevented development of early VF in the myocardial infarction model.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Melatonina/farmacologia , Isquemia Miocárdica/complicações , Fibrilação Ventricular/prevenção & controle , Doença Aguda , Animais , Eletrofisiologia Cardíaca , Fenômenos Eletrofisiológicos , Estresse Oxidativo , Suínos , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/patologia
5.
Sci Rep ; 9(1): 12202, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434969

RESUMO

J-wave pattern has been recognized as an arrhythmic risk marker, particularly in myocardial infarction patients. Mechanisms underlying J-wave development in ischemia remain unknown. In myocardial infarction model, we evaluated activation time delay as a prerequisite of J-wave appearance and predictor of ventricular fibrillation. Body surface ECGs and myocardial unipolar electrograms were recorded in 14 anesthetized pigs. 48 intramural leads were positioned across ventricular free walls and interventricular septum. Myocardial ischemia was induced by ligation of the left anterior descending coronary artery and the recordings were done during 40-minute coronary occlusion. The local activation times were determined as instants of dV/dt minimum during QRS complex in unipolar electrograms. During occlusion, ventricular local activation time prolonged in the middle portion of the left ventricular free wall, and basal and middle portions of septum, while J-waves appeared in precordial leads in 11 animals. In logistic regression and ROC curve analyses, activation time delay at a given time-point was associated with J-wave development, and a longer activation time was associated with ventricular fibrillation appearance. In experimental coronary occlusion, activation delay in ischemic myocardium was associated with generation of the J waves in the body surface ECG and predicted ventricular fibrillation.


Assuntos
Oclusão Coronária/fisiopatologia , Eletrocardiografia , Fibrilação Ventricular/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Suínos
6.
Can J Physiol Pharmacol ; 93(4): 245-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666101

RESUMO

The objective of the study was to investigate the role of electrical remodeling of the ventricular myocardium in hemodynamic impairment and the development of arrhythmogenic substrate. Experiments were conducted with 11 healthy and 12 diabetic (alloxan model, 4 weeks) rabbits. Left ventricular pressure was monitored and unipolar electrograms were recorded from 64 epicardial leads. Aortic banding was used to provoke arrhythmia. The diabetic rabbits had prolonged QTc, with activation-recovery intervals (surrogates for repolarization durations) being relatively short on the left ventricular base and long on the anterior apical portions of both ventricles (P < 0.05). In the diabetic rabbits, a negative correlation (-0.726 to -0.817) was observed between dP/dt(max), dP/dt(min), and repolarization dispersions. Under conditions of systolic overload (5 min), tachyarrhythmias were equally rare and the QTc and activation-recovery intervals were shortened in both groups (P < 0.05), whereas QRS was prolonged in the diabetic rabbits only. The repolarization shortening was more pronounced on the apex, which led to the development of apicobasal and interventricular end of repolarization gradients in the healthy animals, and to the flattening of the repolarization profile in the diabetic group. Thus, the diabetes-related pattern of ventricular repolarization was associated with inotropic and lusitropic impairment of the cardiac pump function.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Cardiomiopatias Diabéticas/fisiopatologia , Ventrículos do Coração/inervação , Disfunção Ventricular/complicações , Remodelação Ventricular , Aloxano/toxicidade , Animais , Animais Endogâmicos , Arritmias Cardíacas/etiologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Cardiomiopatias Diabéticas/patologia , Eletrocardiografia , Feminino , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Tamanho do Órgão , Coelhos , Disfunção Ventricular/patologia , Disfunção Ventricular/fisiopatologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-21281734

RESUMO

The study aimed at the simultaneous determination of the transmural and apicobasal differences in the repolarization timing and the comparison of the contributions of these two repolarization gradients to the development of the body surface T wave potentials in animals with the single heart ventricle (fishes and amphibians). Unipolar potentials were measured on the body surface, epicardium and in the intramural (subepicardial, Epi; midmyocardial; and subendocardial, Endo) ventricular layers of 9 pike and 8 frogs. Activation times, repolarization times and activation-recovery intervals were determined. A transmural gradient in repolarization durations in frogs (Endo>Epi, P<0.024) corresponds to the gradient in repolarization times. No significant transmural difference in repolarization duration is observed in pike that produces a repolarization sequence from Endo to Epi (Endo

Assuntos
Esocidae/fisiologia , Sistema de Condução Cardíaco/fisiologia , Rana temporaria/fisiologia , Animais , Mapeamento Potencial de Superfície Corporal , Endocárdio/fisiologia , Coração/fisiologia , Ventrículos do Coração , Modelos Cardiovasculares , Pericárdio/fisiologia , Especificidade da Espécie , Função Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...