Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(1): 11-13, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38198848

RESUMO

The role of IL-17 signaling in cancer remains convoluted due to its role in regulating the gut microbiome. In a recent issue of Cancer Cell, Chandra et al. demonstrate that microbially driven IL-17 signaling promotes tumor growth.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Interleucina-17 , Transdução de Sinais
2.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37399356

RESUMO

Anticancer immunotherapies, such as immune checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells, have improved outcomes for patients with a variety of malignancies. However, most patients either do not initially respond or do not exhibit durable responses due to primary or adaptive/acquired immune resistance mechanisms of the tumor microenvironment. These suppressive programs are myriad, different between patients with ostensibly the same cancer type, and can harness multiple cell types to reinforce their stability. Consequently, the overall benefit of monotherapies remains limited. Cutting-edge technologies now allow for extensive tumor profiling, which can be used to define tumor cell intrinsic and extrinsic pathways of primary and/or acquired immune resistance, herein referred to as features or feature sets of immune resistance to current therapies. We propose that cancers can be characterized by immune resistance archetypes, comprised of five feature sets encompassing known immune resistance mechanisms. Archetypes of resistance may inform new therapeutic strategies that concurrently address multiple cell axes and/or suppressive mechanisms, and clinicians may consequently be able to prioritize targeted therapy combinations for individual patients to improve overall efficacy and outcomes.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Imunoterapia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Microambiente Tumoral
3.
Cell Mol Gastroenterol Hepatol ; 16(2): 287-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37172822

RESUMO

BACKGROUND & AIMS: The colonic epithelium requires continuous renewal by crypt resident intestinal stem cells (ISCs) and transit-amplifying (TA) cells to maintain barrier integrity, especially after inflammatory damage. The diet of high-income countries contains increasing amounts of sugar, such as sucrose. ISCs and TA cells are sensitive to dietary metabolites, but whether excess sugar affects their function directly is unknown. METHODS: Here, we used a combination of 3-dimensional colonoids and a mouse model of colon damage/repair (dextran sodium sulfate colitis) to show the direct effect of sugar on the transcriptional, metabolic, and regenerative functions of crypt ISCs and TA cells. RESULTS: We show that high-sugar conditions directly limit murine and human colonoid development, which is associated with a reduction in the expression of proliferative genes, adenosine triphosphate levels, and the accumulation of pyruvate. Treatment of colonoids with dichloroacetate, which forces pyruvate into the tricarboxylic acid cycle, restored their growth. In concert, dextran sodium sulfate treatment of mice fed a high-sugar diet led to massive irreparable damage that was independent of the colonic microbiota and its metabolites. Analyses on crypt cells from high-sucrose-fed mice showed a reduction in the expression of ISC genes, impeded proliferative potential, and increased glycolytic potential without a commensurate increase in aerobic respiration. CONCLUSIONS: Taken together, our results indicate that short-term, excess dietary sucrose can directly modulate intestinal crypt cell metabolism and inhibit ISC/TA cell regenerative proliferation. This knowledge may inform diets that better support the treatment of acute intestinal injury.


Assuntos
Colite , Açúcares da Dieta , Camundongos , Humanos , Animais , Dextranos , Colite/metabolismo , Piruvatos
4.
Mucosal Immunol ; 15(3): 408-417, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35194180

RESUMO

Resident memory T cells (Trms) predominantly reside within tissue and are critical for providing rapid protection against invasive viruses, fungi and bacteria. Given that tissues are heavily impacted and shaped by the microbiota, it stands to reason that Trms are also influenced by the microbiota that inhabits barrier sites. The influence of the microbiota is largely mediated by microbial production of metabolites which are crucial to the immune response to both viral infection and cancerous tumors. In addition to the effects of metabolites, antigens derived from the microbiota can activate T cell responses. While microbiota-specific T cells may assist in tissue repair, control of infection and anti-tumor immunity, the actual 'memory' potential of these cells remains unclear. Here, we hypothesize that memory responses to antigens from the microbiota must be 'licensed' by inflammatory signals activated by invasion of the host by microorganisms.


Assuntos
Microbiota , Neoplasias , Bactérias , Humanos , Imunidade , Células T de Memória
5.
Immunity ; 54(12): 2812-2824.e4, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34861182

RESUMO

The composition of the intestinal microbiota is associated with both the development of tumors and the efficacy of anti-tumor immunity. Here, we examined the impact of microbiota-specific T cells in anti-colorectal cancer (CRC) immunity. Introduction of Helicobacter hepaticus (Hhep) in a mouse model of CRC did not alter the microbial landscape but increased tumor infiltration by cytotoxic lymphocytes and inhibited tumor growth. Anti-tumor immunity was independent of CD8+ T cells but dependent upon CD4+ T cells, B cells, and natural killer (NK) cells. Hhep colonization induced Hhep-specific T follicular helper (Tfh) cells, increased the number of colon Tfh cells, and supported the maturation of Hhep+ tumor-adjacent tertiary lymphoid structures. Tfh cells were necessary for Hhep-mediated tumor control and immune infiltration, and adoptive transfer of Hhep-specific CD4+ T cells to Tfh cell-deficient Bcl6fl/flCd4Cre mice restored anti-tumor immunity. Thus, introduction of immunogenic intestinal bacteria can promote Tfh-associated anti-tumor immunity in the colon, suggesting therapeutic approaches for the treatment of CRC.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Colo/patologia , Neoplasias Colorretais/imunologia , Microbioma Gastrointestinal/imunologia , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/fisiologia , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células T Auxiliares Foliculares/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
6.
Sci Transl Med ; 13(623): eabf8495, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878821

RESUMO

Despite the success of immune checkpoint blockade therapy, few strategies sufficiently overcome immunosuppression within the tumor microenvironment (TME). Targeting regulatory T cells (Tregs) is challenging, because perturbing intratumoral Treg function must be specific enough to avoid systemic inflammatory side effects. Thus, no Treg-targeted agents have proven both safe and efficacious in patients with cancer. Neuropilin-1 (NRP1) is recognized for its role in supporting intratumoral Treg function while being dispensable for peripheral homeostasis. Nonetheless, little is known about the biology of human NRP1+ Tregs and the signals that regulate NRP1 expression. Here, we report that NRP1 is preferentially expressed on intratumoral Tregs across six distinct cancer types compared to healthy donor peripheral blood [peripheral blood lymphocyte (PBL)] and site-matched, noncancer tissue. Furthermore, NRP1+ Treg prevalence is associated with reduced progression-free survival in head and neck cancer. Human NRP1+ Tregs have broad activation programs and elevated suppressive function. Unlike mouse Tregs, we demonstrate that NRP1 identifies a transient activation state of human Tregs driven by continuous T cell receptor (TCR) signaling through the mitogen-activated protein kinase pathway and interleukin-2 exposure. The prevalence of NRP1+ Tregs in patient PBL correlates with the intratumoral abundance of NRP1+ Tregs and may indicate higher disease burden. These findings support further clinical evaluation of NRP1 as a suitable therapeutic target to enhance antitumor immunity by inhibiting Treg function in the TME.


Assuntos
Neoplasias de Cabeça e Pescoço , Neuropilina-1 , Animais , Humanos , Imunoterapia , Camundongos , Neuropilina-1/metabolismo , Prevalência , Linfócitos T Reguladores , Microambiente Tumoral
7.
Immunity ; 54(8): 1745-1757.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34348118

RESUMO

Environmental enteric dysfunction (EED) is a gastrointestinal inflammatory disease caused by malnutrition and chronic infection. EED is associated with stunting in children and reduced efficacy of oral vaccines. To study the mechanisms of oral vaccine failure during EED, we developed a microbiota- and diet-dependent mouse EED model. Analysis of E. coli-labile toxin vaccine-specific CD4+ T cells in these mice revealed impaired CD4+ T cell responses in the small intestine and but not the lymph nodes. EED mice exhibited increased frequencies of small intestine-resident RORγT+FOXP3+ regulatory T (Treg) cells. Targeted deletion of RORγT from Treg cells restored small intestinal vaccine-specific CD4 T cell responses and vaccine-mediated protection upon challenge. However, ablation of RORγT+FOXP3+ Treg cells made mice more susceptible to EED-induced stunting. Our findings provide insight into the poor efficacy of oral vaccines in EED and highlight how RORγT+FOXP3+ Treg cells can regulate intestinal immunity while leaving systemic responses intact.


Assuntos
Toxinas Bacterianas/imunologia , Vacinas contra Escherichia coli/imunologia , Gastroenteropatias/imunologia , Intestino Delgado/imunologia , Linfócitos T Reguladores/imunologia , Administração Oral , Animais , Linhagem Celular , Modelos Animais de Doenças , Drosophila , Escherichia coli/imunologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Gastroenteropatias/microbiologia , Gastroenteropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Vacinação
8.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33653801

RESUMO

Immune checkpoint inhibitors (ICIs) have improved overall survival for cancer patients, however, optimal duration of ICI therapy has yet to be defined. Given ICIs were first used to treat patients with metastatic melanoma, a condition that at the time was incurable, little attention was initially paid to how much therapy would be needed for a durable response. As the early immunotherapy trials have matured past 10 years, a significant per cent of patients have demonstrated durable responses; it is now time to determine whether patients have been overtreated, and if durable remissions can still be achieved with less therapy, limiting the physical and financial toxicity associated with years of treatment. Well-designed trials are needed to identify optimal duration of therapy, and to define biomarkers to predict who would benefit from shorter courses of immunotherapy. Here, we outline key questions related to health, financial and societal toxicities of over treating with ICI and present four unique clinical trials aimed at exposing criteria for early cessation of ICI. Taken together, there is a serious liability to overtreating patients with ICI and future work is warranted to determine when it is safe to stop ICI.


Assuntos
Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias/tratamento farmacológico , Ensaios Clínicos como Assunto , Esquema de Medicação , Medicina Baseada em Evidências , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/imunologia , Neoplasias/mortalidade , Neoplasias/patologia , Segurança do Paciente , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
9.
Nature ; 591(7851): 645-651, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589820

RESUMO

Regulatory T (Treg) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumour microenvironment (TME) promotes the recruitment, differentiation and activity of these cells1,2. Tumour cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME3, which places infiltrating effector T cells in competition with the tumour for metabolites and impairs their function4-6. At the same time, Treg cells maintain a strong suppression of effector T cells within the TME7,8. As previous studies suggested that Treg cells possess a distinct metabolic profile from effector T cells9-11, we hypothesized that the altered metabolic landscape of the TME and increased activity of intratumoral Treg cells are linked. Here we show that Treg cells display broad heterogeneity in their metabolism of glucose within normal and transformed tissues, and can engage an alternative metabolic pathway to maintain suppressive function and proliferation. Glucose uptake correlates with poorer suppressive function and long-term instability, and high-glucose conditions impair the function and stability of Treg cells in vitro. Treg cells instead upregulate pathways involved in the metabolism of the glycolytic by-product lactic acid. Treg cells withstand high-lactate conditions, and treatment with lactate prevents the destabilizing effects of high-glucose conditions, generating intermediates necessary for proliferation. Deletion of MCT1-a lactate transporter-in Treg cells reveals that lactate uptake is dispensable for the function of peripheral Treg cells but required intratumorally, resulting in slowed tumour growth and an increased response to immunotherapy. Thus, Treg cells are metabolically flexible: they can use 'alternative' metabolites in the TME to maintain their suppressive identity. Further, our results suggest that tumours avoid destruction by not only depriving effector T cells of nutrients, but also metabolically supporting regulatory populations.


Assuntos
Ácido Láctico/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glucose/metabolismo , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Fatores Supressores Imunológicos/imunologia , Fatores Supressores Imunológicos/metabolismo , Linfócitos T Reguladores/imunologia
10.
Cancer Immunol Res ; 6(8): 882-887, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068755

RESUMO

Inhibitory checkpoint blockade has significantly improved patient response rate across numerous tumor types. However, most patients remain unresponsive to immunotherapy, suggesting that unappreciated mechanisms of resistance exist. The tumor microenvironment (TME) is unique and composed of many suppressive cell populations that inhibit antitumor immune responses, including regulatory T cells (Tregs). The TME is nutrient poor, acidic, and hypoxic, creating a challenging microenvironment for immune cells to function and survive. Tregs suppress a wide variety of cell populations through multiple mechanisms and are tasked with limiting tissue damage. Tregs are now considered to be a barrier to effective antitumor immunity. Systemic Treg depletion is not favored because of their critical role in maintaining immune homeostasis and preventing autoimmunity. Reducing Treg function specifically within the TME may provide a more effective, targeted approach to limit the immunosuppressive environment within the tumor without inducing systemic adverse consequences. Targeting molecules that cause Treg instability, characterized by loss of critical Treg transcription factors such as Foxp3, could result in conversion into cells that cause immune pathology, tissue damage, and subsequent autoimmune side effects. Interferon-γ (IFNγ) can cause intratumoral Treg "fragility," which results in loss of suppressive activity and increased IFNγ production without loss of Foxp3 expression and gross Treg "identity." We reviewed the impact Tregs have on the TME and vice versa, and their implications for responsiveness to cancer immunotherapy. We propose that the extent to which intratumoral Tregs develop a "fragile" phenotype following immunotherapy will predict and dictate responsiveness. Cancer Immunol Res; 6(8); 882-7. ©2018 AACR.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Humanos , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
11.
Cell ; 169(6): 1130-1141.e11, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552348

RESUMO

Regulatory T cells (Tregs) are a barrier to anti-tumor immunity. Neuropilin-1 (Nrp1) is required to maintain intratumoral Treg stability and function but is dispensable for peripheral immune tolerance. Treg-restricted Nrp1 deletion results in profound tumor resistance due to Treg functional fragility. Thus, identifying the basis for Nrp1 dependency and the key drivers of Treg fragility could help to improve immunotherapy for human cancer. We show that a high percentage of intratumoral NRP1+ Tregs correlates with poor prognosis in melanoma and head and neck squamous cell carcinoma. Using a mouse model of melanoma where Nrp1-deficient (Nrp1-/-) and wild-type (Nrp1+/+) Tregs can be assessed in a competitive environment, we find that a high proportion of intratumoral Nrp1-/- Tregs produce interferon-γ (IFNγ), which drives the fragility of surrounding wild-type Tregs, boosts anti-tumor immunity, and facilitates tumor clearance. We also show that IFNγ-induced Treg fragility is required for response to anti-PD1, suggesting that cancer therapies promoting Treg fragility may be efficacious.


Assuntos
Carcinoma de Células Escamosas/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Interferon gama/imunologia , Melanoma/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Fatores de Transcrição Forkhead , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Microambiente Tumoral , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...