Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(18): eadk1698, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701206

RESUMO

Deltas are threatened by erosion due to climate change and reduced sediment supply, but their response to these changes remains poorly quantified. We investigate the abandoned Yellow River delta that has transitioned from rapid growth to ongoing deterioration due to a river avulsion removing the sediment supply. Integrating bathymetric data, process observations, and sediment transport modeling, we find that while the subaerial delta was stabilized by engineering measures, the subaqueous delta continued to erode due to intensified storms, losing 39% of its mass deposited before the avulsion. Long-term observations show that winter storms initiate scouring of the subaqueous delta, contributing up to 70% of seabed erosion. We then analyze 108 global deltas to assess subaqueous delta erosion risks and identify 17 deltas facing similar situations of sediment decline and storm intensification during the past 40 years. Our findings suggest that subaqueous delta erosion must be integrated into delta sustainability evaluations.

2.
Science ; 374(6567): 599-603, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709922

RESUMO

Rivers originating in High Mountain Asia are crucial lifelines for one-third of the world's population. These fragile headwaters are now experiencing amplified climate change, glacier melt, and permafrost thaw. Observational data from 28 headwater basins demonstrate substantial increases in both annual runoff and annual sediment fluxes across the past six decades. The increases are accelerating from the mid-1990s in response to a warmer and wetter climate. The total sediment flux from High Mountain Asia is projected to more than double by 2050 under an extreme climate change scenario. These findings have far-reaching implications for the region's hydropower, food, and environmental security.

3.
Sci Total Environ ; 720: 137538, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32143043

RESUMO

Modeling is an important way to assess current and future permafrost spatial distribution and dynamics, especially in data poor areas like the Arctic region. Here, we evaluate a physics-based analytical model, Kudryavtsev's active layer model, which is widely used because it has relatively few data requirements. This model was recently incorporated into a component modeling toolbox, allowing for coupled modeling of permafrost and geomorphic processes over geological timescales. However, systematic quantitative assessment of the influence of its controlling parameters on permafrost temperature and active layer thickness predictions has not been undertaken before. We investigate the sensitivity of the Kudryavtsev's active layer model by Monte Carlo simulations to generate probability distributions for input parameters and compare predictions with a comprehensive benchmark dataset of in-situ permafrost observations over entire Alaska. Predicted permafrost surface temperature is highly dependent on mean annual air temperature (r = 0.78 on average), annual temperature amplitude (-0.41), and winter-averaged snow thickness (0.30). Uncertainty of predicted permafrost temperature is relatively small (RMSE = 1 °C), when air temperature and snow depth are well constrained. Similarly, RMSE between simulated and observed ALT at stations is ~0.08 m. However, under given air temperature and snow conditions, soil water content bias can significantly affect modeled active layer thickness (RMSE = 0.1 m or 40% of the observed active layer thickness). If soil water content has a large bias, improvements in other parameters may not significantly improve the active layer predictions of the Kudryavtsev's model.

4.
Science ; 358(6365): 879, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146801
5.
Nature ; 550(7674): 101-104, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28980627

RESUMO

Climate changes are pronounced in Arctic regions and increase the vulnerability of the Arctic coastal zone. For example, increases in melting of the Greenland Ice Sheet and reductions in sea ice and permafrost distribution are likely to alter coastal morphodynamics. The deltas of Greenland are largely unaffected by human activity, but increased freshwater runoff and sediment fluxes may increase the size of the deltas, whereas increased wave activity in ice-free periods could reduce their size, with the net impact being unclear until now. Here we show that southwestern Greenland deltas were largely stable from the 1940s to 1980s, but prograded (that is, sediment deposition extended the delta into the sea) in a warming Arctic from the 1980s to 2010s. Our results are based on the areal changes of 121 deltas since the 1940s, assessed using newly discovered aerial photographs and remotely sensed imagery. We find that delta progradation was driven by high freshwater runoff from the Greenland Ice Sheet coinciding with periods of open water. Progradation was controlled by the local initial environmental conditions (that is, accumulated air temperatures above 0 °C per year, freshwater runoff and sea ice in the 1980s) rather than by local changes in these conditions from the 1980s to 2010s at each delta. This is in contrast to a dominantly eroding trend of Arctic sedimentary coasts along the coastal plains of Alaska, Siberia and western Canada, and to the spatially variable patterns of erosion and accretion along the large deltas of the main rivers in the Arctic. Our results improve the understanding of Arctic coastal evolution in a changing climate, and reveal the impacts on coastal areas of increasing ice mass loss and the associated freshwater runoff and lengthening of open-water periods.

6.
Ambio ; 41(7): 682-98, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22673799

RESUMO

We analyze 4000-year flood history of the lower Yellow River and the history of agricultural development in the middle river by investigating historical writings and quantitative time series data of environmental changes in the river basin. Flood dynamics are characterized by positive feedback loops, critical thresholds of natural processes, and abrupt transitions caused by socio-economic factors. Technological and organizational innovations were dominant driving forces of the flood history. The popularization of iron plows and embarkment of the lower river in the 4th century BC initiated a positive feedback loop on levee breaches. The strength of the feedback loop was enhanced by farming of coarse-sediment producing areas, steep hillslope cultivation, and a new river management paradigm, and finally pushed the flood frequency to its climax in the seventeenth century. The co-evolution of river dynamics and Chinese society is remarkable, especially farming and soil erosion in the middle river, and central authority and river management in the lower river.


Assuntos
Inundações , Fatores Socioeconômicos , China , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...