Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 13(8): 4134-4159, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36032581

RESUMO

Legionella is a genus of ubiquitous environmental pathogens found in freshwater systems, moist soil, and composted materials. More than four decades of Legionella research has provided important insights into Legionella pathogenesis. Although standard commercial microscopes have led to significant advances in understanding Legionella pathogenesis, great potential exists in the deployment of more advanced imaging techniques to provide additional insights. The lattice light sheet microscope (LLSM) is a recently developed microscope for 4D live cell imaging with high resolution and minimum photo-damage. We built a LLSM with an improved version for the optical layout with two path-stretching mirror sets and a novel reconfigurable galvanometer scanner (RGS) module to improve the reproducibility and reliability of the alignment and maintenance of the LLSM. We commissioned this LLSM to study Legionella pneumophila infection with a tailored workflow designed over instrumentation, experiments, and data processing methods. Our results indicate that Legionella pneumophila infection is correlated with a series of morphological signatures such as smoothness, migration pattern and polarity both statistically and dynamically. Our work demonstrates the benefits of using LLSM for studying long-term questions in bacterial infection. Our free-for-use modifications and workflow designs on the use of LLSM system contributes to the adoption and promotion of the state-of-the-art LLSM technology for both academic and commercial applications.

2.
Mol Microbiol ; 111(3): 678-699, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30536755

RESUMO

The UzcRS two-component system in Caulobacter crescentus mediates widespread transcriptional activation in response to the metals U, Zn and Cu. Unexpectedly, a screen for mutations that affected the activity of the UzcR-regulated urcA promoter (PurcA ) revealed four previously uncharacterized proteins whose inactivation led to metal-independent induction of PurcA . Using molecular genetics and functional genomics, we find that these auxiliary regulators control PurcA expression by modulating the activity of UzcRS through distinct mechanisms. An ABC transporter with a periplasmic metallo-aminopeptidase domain forms a sensory complex with UzcRS, antagonizing metal dependent stimulation by virtue of its ATPase and peptidase domains. Two MarR-like transcription factors synergistically regulate UzcRS activity by repressing the expression of the membrane proteins UzcY and UzcZ, which stimulate UzcRS activity and enhance its sensitivity to a more environmentally relevant U/Zn/Cu concentration range. Additionally, the membrane protein UzcX, whose expression is positively regulated by UzcR, provides a mechanism of feedback inhibition within the UzcRS circuit. Collectively, these data suggest that UzcRS functions as the core-signaling unit within a multicomponent signal transduction pathway that includes a diverse set of auxiliary regulators, providing further insight into the complexity of signaling networks.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/efeitos dos fármacos , Caulobacter crescentus/genética , Regulação Bacteriana da Expressão Gênica , Metais Pesados/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transporte Biológico Ativo , Proteínas de Membrana Transportadoras/metabolismo , Transcrição Gênica
3.
Mol Microbiol ; 104(1): 46-64, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28035693

RESUMO

Despite the well-known toxicity of uranium (U) to bacteria, little is known about how cells sense and respond to U. The recent finding of a U-specific stress response in Caulobacter crescentus has provided a foundation for studying the mechanisms of U- perception in bacteria. To gain insight into this process, we used a forward genetic screen to identify the regulatory components governing expression of the urcA promoter (PurcA ) that is strongly induced by U. This approach unearthed a previously uncharacterized two-component system, named UzcRS, which is responsible for U-dependent activation of PurcA . UzcRS is also highly responsive to zinc and copper, revealing a broader specificity than previously thought. Using ChIP-seq, we found that UzcR binds extensively throughout the genome in a metal-dependent manner and recognizes a noncanonical DNA-binding site. Coupling the genome-wide occupancy data with RNA-seq analysis revealed that UzcR is a global regulator of transcription, predominately activating genes encoding proteins that are localized to the cell envelope; these include metallopeptidases, multidrug-resistant efflux (MDR) pumps, TonB-dependent receptors and many proteins of unknown function. Collectively, our data suggest that UzcRS couples the perception of U, Zn and Cu with a novel extracytoplasmic stress response.


Assuntos
Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Regiões Promotoras Genéticas/genética , Elementos Reguladores de Transcrição/genética , Sequências Reguladoras de Ácido Nucleico/genética , Estresse Fisiológico , Transcrição Gênica/genética , Urânio/metabolismo , Zinco/metabolismo
4.
Appl Environ Microbiol ; 82(23): 6961-6972, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663028

RESUMO

Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior. Caulobacter crescentus is unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFa and RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology to Escherichia coli TolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFa and RsaFb are not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFa and RsaFb are required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFa and RsaFb led to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFa and RsaFb led to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFa and RsaFb in cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in C. crescentusIMPORTANCE Decreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural systems. As one example of a system evolved to prevent intracellular protein accumulation, our study demonstrates that Caulobacter crescentus has two homologous outer membrane transporter proteins that are involved in S-layer export. This is an interesting case study that demonstrates how bacteria can evolve redundancy to ensure adequate protein export functionality and maintain high cellular fitness. Moreover, we provide evidence that these two outer membrane proteins, although being the closest C. crescentus homologs to TolC in E. coli, do not process TolC functionality in C. crescentus.

5.
J Bacteriol ; 197(19): 3160-72, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26195598

RESUMO

UNLABELLED: The ubiquitous aquatic bacterium Caulobacter crescentus is highly resistant to uranium (U) and facilitates U biomineralization and thus holds promise as an agent of U bioremediation. To gain an understanding of how C. crescentus tolerates U, we employed transposon (Tn) mutagenesis paired with deep sequencing (Tn-seq) in a global screen for genomic elements required for U resistance. Of the 3,879 annotated genes in the C. crescentus genome, 37 were found to be specifically associated with fitness under U stress, 15 of which were subsequently tested through mutational analysis. Systematic deletion analysis revealed that mutants lacking outer membrane transporters (rsaFa and rsaFb), a stress-responsive transcription factor (cztR), or a ppGpp synthetase/hydrolase (spoT) exhibited a significantly lower survival rate under U stress. RsaFa and RsaFb, which are homologues of TolC in Escherichia coli, have previously been shown to mediate S-layer export. Transcriptional analysis revealed upregulation of rsaFa and rsaFb by 4- and 10-fold, respectively, in the presence of U. We additionally show that rsaFa mutants accumulated higher levels of U than the wild type, with no significant increase in oxidative stress levels. Our results suggest a function for RsaFa and RsaFb in U efflux and/or maintenance of membrane integrity during U stress. In addition, we present data implicating CztR and SpoT in resistance to U stress. Together, our findings reveal novel gene targets that are key to understanding the molecular mechanisms of U resistance in C. crescentus. IMPORTANCE: Caulobacter crescentus is an aerobic bacterium that is highly resistant to uranium (U) and has great potential to be used in U bioremediation, but its mechanisms of U resistance are poorly understood. We conducted a Tn-seq screen to identify genes specifically required for U resistance in C. crescentus. The genes that we identified have previously remained elusive using other omics approaches and thus provide significant insight into the mechanisms of U resistance by C. crescentus. In particular, we show that outer membrane transporters RsaFa and RsaFb, previously known as part of the S-layer export machinery, may confer U resistance by U efflux and/or by maintaining membrane integrity during U stress.


Assuntos
Caulobacter crescentus/metabolismo , Elementos de DNA Transponíveis/genética , Estresse Fisiológico/efeitos dos fármacos , Urânio/toxicidade , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Caulobacter crescentus/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Mutagênese , Transcriptoma
6.
Proc Natl Acad Sci U S A ; 111(41): E4386-93, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267623

RESUMO

Phenotypic heterogeneity within a population of genetically identical cells is emerging as a common theme in multiple biological systems, including human cell biology and cancer. Using live-cell imaging, flow cytometry, and kinetic modeling, we showed that two states--quiescence and cell cycling--can coexist within an isogenic population of human cells and resulted from low basal expression levels of p21, a Cyclin-dependent kinase (CDK) inhibitor (CKI). We attribute the p21-dependent heterogeneity in cell cycle activity to double-negative feedback regulation involving CDK2, p21, and E3 ubiquitin ligases. In support of this mechanism, analysis of cells at a point before cell cycle entry (i.e., before the G1/S transition) revealed a p21-CDK2 axis that determines quiescent and cycling cell states. Our findings suggest a mechanistic role for p21 in generating heterogeneity in both normal tissues and tumors.


Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Bromodesoxiuridina/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Cinética , Lisina/metabolismo , Modelos Biológicos , Imagem Molecular , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitinação/efeitos dos fármacos
7.
Cell ; 155(2): 369-83, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24075009

RESUMO

Tissue homeostasis in metazoans is regulated by transitions of cells between quiescence and proliferation. The hallmark of proliferating populations is progression through the cell cycle, which is driven by cyclin-dependent kinase (CDK) activity. Here, we introduce a live-cell sensor for CDK2 activity and unexpectedly found that proliferating cells bifurcate into two populations as they exit mitosis. Many cells immediately commit to the next cell cycle by building up CDK2 activity from an intermediate level, while other cells lack CDK2 activity and enter a transient state of quiescence. This bifurcation is directly controlled by the CDK inhibitor p21 and is regulated by mitogens during a restriction window at the end of the previous cell cycle. Thus, cells decide at the end of mitosis to either start the next cell cycle by immediately building up CDK2 activity or to enter a transient G0-like state by suppressing CDK2 activity.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Mitose , Células 3T3 , Animais , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Camundongos , Proteína do Retinoblastoma/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(28): 11284-9, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798422

RESUMO

We engineered short ORFs and used them to control the expression level of recombinant proteins. These short ORFs, encoding a two-amino acid peptide, were placed upstream of an ORF encoding a protein of interest. Insertion of these upstream ORFs (uORFs) resulted in suppression of protein expression. By varying the base sequence preceding the uORF, we sought to vary the translation initiation rate of the uORF and subsequently control the degree of this suppression. Using this strategy, we generated a library of RNA sequence elements that can specify protein expression over a broad range of levels. By also using multiple uORFs in series and non-AUG start codons, we were able to generate particularly low expression levels, allowing us to achieve expression levels spanning three orders of magnitude. Modeling supported a mechanism where uORFs shunt the flow of ribosomes away from the downstream protein-coding ORF. With a lower translation initiation rate at the uORF, more ribosomes "leak" past the uORF; consequently, more ribosomes are able to reach and translate the downstream ORF. We report expression control by engineering uORFs and translation initiation to be robust, predictable, and reproducible across all cell types tested. We propose control of translation initiation as a primary method of choice for tuning expression in mammalian systems.


Assuntos
Expressão Gênica , Fases de Leitura Aberta , Animais , Linhagem Celular , Humanos , Modelos Genéticos
9.
Anal Chem ; 79(23): 9150-9, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17973401

RESUMO

Internalization and subcellular localization in HeLa cells of gold nanoparticles modified with the SV40 large T antigen were quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES). Internalization was monitored as a function of incubation time, temperature, nanoparticle diameter, and large T surface coverage. Increasing the amount of large T peptides per gold nanoparticle complex, by either increasing the coverage at constant nanoparticle diameter or by increasing the nanoparticle diameter at constant large T coverage, resulted in more cellular internalization. In addition, nuclear fractionation was performed to quantify nuclear localization of these complexes as a function of large T coverage. In contrast to our prior qualitative investigations of nuclear localization by video-enhanced color differential interference contrast microscopy (VEC-DIC), ICP-OES was able to detect nanoparticles inside fractionated cell nuclei. Although increasing the large T coverage was found to afford higher cell internalization and nuclear targeting, quantitative evaluation of cytotoxicity revealed that higher large T coverages also resulted in greater cytotoxicity. The ICP-OES and nuclear fractionation techniques reported here are valuable tools that can add important quantitative information to optical and electron imaging methods such as VEC-DIC and transmission electron microscopy regarding the fate of nanoparticles in cells.


Assuntos
Antígenos Transformantes de Poliomavirus/metabolismo , Ouro/química , Nanopartículas Metálicas , Soroalbumina Bovina/metabolismo , Núcleo Celular/metabolismo , Células HeLa , Humanos , Reprodutibilidade dos Testes , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...