Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Mol Med (Berl) ; 102(6): 761-771, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38653825

RESUMO

Epilepsy is a neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to diverse etiology, pathobiology, and pharmacotherapy-resistant variants. The anticonvulsive effects of herbal leads with biocompatibility and toxicity considerations have attracted much interest, inspiring mechanistic analysis with the view of their use for engagement of new targets and combination with antiseizure pharmacotherapies. This article presents a comprehensive overview of the key molecular players and putative action mechanisms of the most common antiepileptic herbals demonstrated in tissue culture and preclinical models. From the review of the literature, it emerges that their effects are mediated via five distinct mechanisms: (1) reduction of membrane excitability through inhibition of cation channels, (2) improvement of mitochondrial functions with antioxidant effects, (3) enhancement in synaptic transmission mediated by GABAA receptors, (4) improvement of immune response with anti-inflammatory action, and (5) suppression of protein synthesis and metabolism. While some of the primary targets and action mechanisms of herbal anticonvulsants (1, 3) are shared with antiseizure pharmacotherapies, herbal leads also engage with distinct mechanisms (2, 4, and 5), suggesting new drug targets and opportunities for their integration with antiseizure medications. Addressing outstanding questions through research and in silico modeling should facilitate the future use of herbals as auxiliary therapy in epilepsy and guide the development of treatment of pharmacoresistant seizures through rigorous trials and regulatory approval.


Assuntos
Anticonvulsivantes , Humanos , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , Animais , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo
2.
Pharmaceutics ; 16(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38258133

RESUMO

The heterogeneity of the glioma subtype glioblastoma multiforme (GBM) challenges effective neuropathological treatment. The reliance on in vitro studies and xenografted animal models to simulate human GBM has proven ineffective. Currently, a dearth of knowledge exists regarding the applicability of cell line biomolecules to the realm of GBM pathogenesis. Our study's objectives were to address this preclinical issue and assess prominin-1, ICAM-1, PARTICLE and GAS5 as potential GBM diagnostic targets. The methodologies included haemoxylin and eosin staining, immunofluorescence, in situ hybridization and quantitative PCR. The findings identified that morphology correlates with malignancy in GBM patient pathology. Immunofluorescence confocal microscopy revealed prominin-1 in pseudo-palisades adjacent to necrotic foci in both animal and human GBM. Evidence is presented for an ICAM-1 association with degenerating vasculature. Significantly elevated nuclear PARTICLE expression from in situ hybridization and quantitative PCR reflected its role as a tumor activator. GAS5 identified within necrotic GBM validated this potential prognostic biomolecule with extended survival. Here we present evidence for the stem cell marker prominin-1 and the chemotherapeutic target ICAM-1 in a glioma animal model and GBM pathology sections from patients that elicited alternative responses to adjuvant chemotherapy. This foremost study introduces the long non-coding RNA PARTICLE into the context of human GBM pathogenesis while substantiating the role of GAS5 as a tumor suppressor. The validation of GBM biomarkers from cellular models contributes to the advancement towards superior detection, therapeutic responders and the ultimate attainment of promising prognoses for this currently incurable brain cancer.

3.
Brain Struct Funct ; 229(1): 1-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37999738

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterised by a progressive loss of motor neurons controlling voluntary muscle activity. The disease manifests through a variety of motor dysfunctions related to the extent of damage and loss of neurons at different anatomical locations. Despite extensive research, it remains unclear why some motor neurons are especially susceptible to the disease, while others are affected less or even spared. In this article, we review the neurobiological mechanisms, neurochemical profiles, and morpho-functional characteristics of various motor neuron groups and types of motor units implicated in their differential exposure to degeneration. We discuss specific cell-autonomous (intrinsic) and extrinsic factors influencing the vulnerability gradient of motor units and motor neuron types to ALS, with their impact on disease manifestation, course, and prognosis, as revealed in preclinical and clinical studies. We consider the outstanding challenges and emerging opportunities for interpreting the phenotypic and mechanistic variability of the disease to identify targets for clinical interventions.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Animais , Neurônios Motores , Modelos Animais de Doenças
4.
Heliyon ; 9(8): e19050, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37664737

RESUMO

In addition to primary reproductive functions, gonadal hormones play an important role in an array of neural mechanisms across the human lifespan. The ageing-related decline in their activity has been linked to the deterioration of cognitive functions in otherwise healthy women, associated with menopause transition, contributing to higher incidents of post-menopause dementia. Given the growing utility of gonadal steroids for birth control, as well as for compensatory treatment of menopause and oophorectomy symptoms, and adjuvant transgender therapy, their long-term effects on neural mechanisms warrant comprehensive assessment. In this article, we present an ageing perspective on the cognitive outcomes from contraceptive and replacement therapeutic use of gonadal hormones and discuss their effects on the risk of developing Alzheimer's and Parkinson's dementia. Despite rising data supporting the ameliorative effects of reproductive hormones on cognitive facilities, their impact varies depending on study design and type of intervention, thus, implying dynamic neuro-endocrine interactions with complex compensatory mechanisms. Elucidating differential effects of reproductive hormone adjustments on cognition with underlying mechanisms is expected not only to shed light on important aspects of brain ageing and dementia but to facilitate their use in personalized medicine with improved safety margins and therapeutic outcomes.

5.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762660

RESUMO

Renal cell carcinoma (RCC) is the most prevalent type of kidney cancer originating from renal tubular epithelial cells, with clear cell RCC comprising approximately 80% of cases. The primary treatment modalities for RCC are surgery and targeted therapy, albeit with suboptimal efficacies. Despite progress in RCC research, significant challenges persist, including advanced distant metastasis, delayed diagnosis, and drug resistance. Growing evidence suggests that extracellular vesicles (EVs) play a pivotal role in multiple aspects of RCC, including tumorigenesis, metastasis, immune evasion, and drug response. These membrane-bound vesicles are released into the extracellular environment by nearly all cell types and are capable of transferring various bioactive molecules, including RNA, DNA, proteins, and lipids, aiding intercellular communication. The molecular cargo carried by EVs renders them an attractive resource for biomarker identification, while their multifarious role in the RCC offers opportunities for diagnosis and targeted interventions, including EV-based therapies. As the most versatile type of EVs, exosomes have attracted much attention as nanocarriers of biologicals, with multi-range signaling effects. Despite the growing interest in exosomes, there is currently no widely accepted consensus on their subtypes and properties. The emerging heterogeneity of exosomes presents both methodological challenges and exciting opportunities for diagnostic and clinical interventions. This article reviews the characteristics and functions of exosomes, with a particular reference to the recent advances in their application to the diagnosis and treatment of RCC.

6.
Neurotherapeutics ; 20(3): 767-778, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36884195

RESUMO

In neurodegenerative diseases, changes in neuronal proteins in the cerebrospinal fluid and blood are viewed as potential biomarkers of the primary pathology in the central nervous system (CNS). Recent reports suggest, however, that level of neuronal proteins in fluids also alters in several types of epilepsy in various age groups, including children. With increasing evidence supporting clinical and sub-clinical seizures in Alzheimer's disease, Lewy body dementia, Parkinson's disease, and in other less common neurodegenerative conditions, these findings call into question the specificity of neuronal protein response to neurodegenerative process and urge analysis of the effects of concomitant epilepsy and other comorbidities. In this article, we revisit the evidence for alterations in neuronal proteins in the blood and cerebrospinal fluid associated with epilepsy with and without neurodegenerative diseases. We discuss shared and distinctive characteristics of changes in neuronal markers, review their neurobiological mechanisms, and consider the emerging opportunities and challenges for their future research and diagnostic use.


Assuntos
Doença de Alzheimer , Epilepsia , Doenças Neurodegenerativas , Criança , Humanos , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/diagnóstico , Proteínas tau , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Biomarcadores
7.
Nat Rev Neurosci ; 24(4): 252-265, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658346

RESUMO

With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.


Assuntos
Dor Crônica , Nociceptores , Humanos , Nociceptores/metabolismo , Dor Crônica/genética , Dor Crônica/terapia , Dor Crônica/metabolismo , Transcriptoma
8.
Drug Discov Today ; 28(2): 103467, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528281

RESUMO

Perinatal depression is the most common psychiatric complication of pregnancy, with its detrimental effects on maternal and infant health widely underrated. There is a pressing need for specific molecular biomarkers, with pregnancy-related decline in brain-derived neurotrophic factor (BDNF) in the blood and downregulation of TrkB receptor in the brain reported in clinical and preclinical studies. In this review, we explore the emerging role of BDNF in reproductive biology and discuss evidence suggesting its deficiency as a risk factor for perinatal depression. With the increasing evidence for restoration of serum BDNF levels by antidepressant therapy, the strengthening association of perinatal depression with deficiency of BDNF supports its potential as a surrogate endpoint for preclinical and clinical studies.


Assuntos
Depressão , Transtorno Depressivo , Gravidez , Feminino , Humanos , Depressão/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Encéfalo/metabolismo , Biomarcadores
9.
Eur J Neurosci ; 57(1): 17-31, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380588

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition causing a range of social and communication impairments. Although the role of multiple genes and environmental factors has been reported, the effects of the interplay between genes and environment on the onset and progression of the disease remains elusive. We housed wild-type (Tsc2+/+) and tuberous sclerosis 2 deficient (Tsc2+/-) Eker rats (ASD model) in individually ventilated cages or enriched conditions and conducted a series of behavioural tests followed by the histochemical analysis of dendritic spines and plasticity in three age groups (days 45, 90 and 365). The elevated plus-maze test revealed a reduction of anxiety by enrichment, whereas the mobility of young and adult Eker rats in the open field was lower compared to the wild type. In the social interaction test, an enriched environment reduced social contact in the youngest group and increased anogenital exploration in 90- and 365-day-old rats. Self-grooming was increased by environmental enrichment in young and adult rats and decreased in aged Eker rats. Dendritic spine counts revealed an increased spine density in the cingulate gyrus in adult Ekers irrespective of housing conditions, whereas spine density in hippocampal pyramidal neurons was comparable across all genotypes and groups. Morphometric analysis of dendritic spines revealed age-related changes in spine morphology and density, which were responsive to animal genotype and environment. Taken together, our findings suggest that under TSC2 haploinsufficiency and mTORC1 hyperactivity, the expression of behavioural signs and neuroplasticity in Eker rats can be differentially influenced by the developmental stage and environment.


Assuntos
Transtorno do Espectro Autista , Ratos , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células Piramidais/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Modelos Animais de Doenças
10.
Mol Neurobiol ; 60(3): 1440-1452, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36462136

RESUMO

Impairments of N-methyl-D-aspartate receptor (NMDAR) activity have been implicated in several neuropsychiatric disorders, with pharmacological inhibition of NMDAR-mediated currents and associated neurobehavioral changes considered as a model of schizophrenia. We analyzed the effects of brief and long-term exposure of rat cortical cultures to the most prevalent endogenous modulators of NMDAR (kynurenic acid, pregnenolone sulfate, spermidine, and zinc) on neuronal viability, stimulation-induced release of glutamate, and dendritic morphology with synaptic density. Both, glutamate release and neuronal viability studies revealed no difference between the test and control groups. No differences were also observed in the number of dendritic branching and length, or density of synaptic connections and neuronal soma size. Comparison of the extent of dendritic projections and branching patterns, however, revealed enhanced distal arborization with the expansion of the dendritic area under prolonged treatment of cultures with physiological concentrations of NMDAR modulators, with differences reaching significance in spermidine and pregnenolone sulfate tests. Measurements of the density of glutamatergic synapses showed consistency across all neuronal groups, except those treated with pregnenolone sulfate, which showed a reduction of PSD-95-positive elements. Overall, our data suggest that constitutive glutamatergic activity mediated by NMDAR controls the dendritic field expansion and can influence the integrative properties of cortical neurons.


Assuntos
Receptores de N-Metil-D-Aspartato , Espermidina , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Glutamatos
11.
Neuroscience ; 504: 75-78, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195285

RESUMO

Autoantibodies to neuronal antigens are viewed as potential biomarkers for neurodegenerative diseases. Increasing evidence, however, suggests a dissociation of the neurodegenerative process in the central nervous system and dynamics of neuronal proteins in peripheral circulation with the prevalence of a wide variety of immunoglobulins reactive to neuronal antigens reported also in the blood of healthy subjects, including children. Recently discovered physiological turnover of neurons in enteric nervous system with release of neuronal proteins in peripheral circulation may account for this conundrum and provide a new perspective on molecular biomarkers of neurodegenerative diseases and immunotherapy.


Assuntos
Sistema Nervoso Entérico , Doenças Neurodegenerativas , Criança , Humanos , Doenças Neurodegenerativas/metabolismo , Autoimunidade , Neurogênese/fisiologia , Sistema Nervoso Entérico/metabolismo , Biomarcadores/metabolismo
12.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682780

RESUMO

Celiac disease (CeD) manifests with autoimmune intestinal inflammation from gluten and genetic predisposition linked to human leukocyte antigen class-II (HLA-II) gene variants. Antigen-presenting cells facilitate gluten exposition through the interaction of their surface major histocompatibility complex (MHC) with the T cell receptor (TCR) on T lymphocytes. This fundamental mechanism of adaptive immunity has broadened upon recognition of extracellular exosomal MHC, raising awareness of an alternative means for antigen presentation. This study demonstrates that conditioned growth media (CGM) previously exposed to monocyte-derived dendritic cells from CeD significantly downregulates the CD3+ lineage marker of control T cells. Such increased activation was reflected in their elevated IL-2 secretion. Exosome localization motif identification and quantification within HLA-DQA1 and HLA-DQB1 transcripts highlighted their significant prevalence within HLA-DQB1 alleles associated with CeD susceptibility. Flow cytometry revealed the strong correlation between HLA-DQ and the CD63 exosomal marker in T cells exposed to CGM from MoDCs sourced from CeD patients. This resulted in lower concentrations of CD25+ CD127- T cells, suggestive of their compromised induction to T-regulatory cells associated with CeD homeostasis. This foremost comparative study deciphered the genomic basis and extracellular exosomal effects of HLA transfer on T lymphocytes in the context of CeD, offering greater insight into this auto-immune disease.


Assuntos
Doença Celíaca , Alelos , Glutens/genética , Antígenos HLA-DQ/genética , Humanos , Linfócitos T Reguladores
13.
Theranostics ; 12(7): 3045-3056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547759

RESUMO

Neurodegenerative diseases (NDDs) are associated with the accumulation of a range of misfolded proteins across the central nervous system and related autoimmune responses, including the generation of antibodies and the activation of immune cells. Both innate and adaptive immunity become mobilized, leading to cellular and humoral effects. The role of humoral immunity in disease onset and progression remains to be elucidated with rising evidence suggestive of positive (protection, repair) and negative (injury, toxicity) outcomes. In this study, we review advances in research of neuron-targeting autoantibodies in the most prevalent NDDs. We discuss their biological origin, molecular diversity and changes in the course of diseases, consider their relevance to the initiation and progression of pathology as well as diagnostic and prognostic significance. It is suggested that the emerging autoimmune aspects of NDDs not only could facilitate the early detection but also might help to elucidate previously unknown facets of pathobiology with relevance to the development of precision medicine.


Assuntos
Autoanticorpos , Doenças Neurodegenerativas , Autoimunidade , Biomarcadores , Humanos , Doenças Neurodegenerativas/diagnóstico , Neurônios , Proteínas
14.
Autism Res ; 15(5): 791-805, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35178882

RESUMO

The cerebellum hosts more than half of all neurons of the human brain, with their organized activity playing a key role in coordinating motor functions. Cerebellar activity has also been implicated in the control of speech, communication, and social behavior, which are compromised in autism spectrum disorders (ASD). Despite major research advances, there is a shortage of mechanistic data relating cellular and molecular changes in the cerebellum to autistic behavior. We studied the impact of tuberous sclerosis complex 2 haploinsufficiency (Tsc2+/-) with downstream mTORC1 hyperactivity on cerebellar morphology and cellular organization in 1, 9, and 18 m.o. Eker rats, to determine possible structural correlates of an autism-like behavioural phenotype in this model. We report a greater developmental expansion of the cerebellar vermis, owing to enlarged white matter and thickened molecular layer. Histochemical and immunofluorescence data suggest age-related demyelination of central tract of the vermis, as evident from reduced level of myelin-basic protein in the arbora vitae. We also observed a higher number of astrocytes in Tsc2+/- rats of older age while the number of Purkinje cells (PCs) in these animals was lower than in wild-type controls. Unlike astrocytes and PCs, Bergmann glia remained unaltered at all ages in both genotypes, while the number of microglia was higher in Tsc2+/- rats of older age. The convergent evidence for a variety of age-dependent cellular changes in the cerebellum of rats associated with mTORC1 hyperactivity, thus, predicts an array of functional impairments, which may contribute to the developmental onset of an autism-like behavioral phenotype in this model. LAY SUMMARY: This study elucidates the impact of constitutive mTORC1 hyperactivity on cerebellar morphology and cellular organization in a rat model of autism and epilepsy. It describes age-dependent degeneration of Purkinje neurons, with demyelination of central tract as well as activation of microglia, and discusses the implications of these changes for neuro-behavioral phenotypes. The described changes provide new indications for the putative mechanisms underlying cerebellar impairments with their age-related onset, which may contribute to the pathobiology of autism, epilepsy, and related disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Doenças Desmielinizantes , Epilepsia , Animais , Cerebelo/metabolismo , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/metabolismo , Epilepsia/complicações , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fenótipo , Ratos , Esclerose Tuberosa
15.
Neurosci Lett ; 764: 136194, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34433100

RESUMO

Notwithstanding major advances in psychotherapeutics, their efficacy and specificity remain limited. The slow onset of beneficial outcomes and numerous adverse effects of widely used medications remain of chief concern, warranting in-depth studies. The majority of frontline therapies are thought to enhance the endogenous monoaminergic drive, to initiate a cascade of molecular events leading to lasting functional and structural plasticity. They also involve alterations in trophic factor signalling, including brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), glial cell-derived neurotrophic factor (GDNF), and others. In several major mental disorders, emerging data suggest protective and restorative effects of trophic factors in preclinical models, when applied on their own. Antidepressant outcomes of VGF and FGF2, for instance, were shown in experimental animals, while BDNF and GDNF prove useful in the treatment of addiction, schizophrenia, and autism spectrum disorders. The main challenge with the effective translation of these and other findings in the clinic is the knowledge gap in action mechanisms with potential risks, as well as the lack of effective platforms for validation under clinical settings. Herein, we review the state-of-the-art and advances in the therapeutic use of trophic factors in several major neuropsychiatric disorders.


Assuntos
Transtornos Mentais/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas , Fatores de Crescimento Neural/administração & dosagem , Plasticidade Neuronal/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Literatura de Revisão como Assunto
16.
Brain Sci ; 11(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207434

RESUMO

Glioblastoma multiforme (GBM) is a primary brain cancer of poor prognosis, with existing treatments remaining essentially palliative. Current GBM therapy fails due to rapid reappearance of the heterogeneous neoplasm, with models suggesting that the recurrent growth is from treatment-resistant glioblastoma stem-like cells (GSCs). Whether GSCs depend on survival/proliferative cues from their surrounding microenvironmental niche, particularly surrounding the leading edge after treatment remains unknown. Simulating human GBM in the laboratory relies on representative cell lines and xenograft models for translational medicine. Due to U87MG source discrepancy and differential proliferation responses to retinoic acid treatment, this study highlights the challenges faced by laboratory scientists working with this representative GBM cell line. Investigating the response to all trans-retinoic acid (ATRA) revealed its sequestering of the prominin-1 stem cell marker. ICAM-1 universally present throughout U87MG was enhanced by ATRA, of interest for chemotherapy targeting studies. ATRA triggered diverse expression patterns of long non-coding RNAs PARTICLE and GAS5 in the leading edge and established monolayer growth zone microenvironment. Karyotyping confirmed the female origin of U87MG sourced from Europe. Passaging U87MG revealed the presence of chromosomal anomalies reflective of structural genomic alterations in this glioblastoma cell line. All evidence considered, this study exposes further phenotypic nuances of U87MG which may belie researchers seeking data contributing towards the elusive cure for GBM.

17.
Brain Struct Funct ; 226(7): 2001-2017, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34061250

RESUMO

Ever since its first use in surgery, general anesthesia has been regarded as a medical miracle enabling countless life-saving diagnostic and therapeutic interventions without pain sensation and traumatic memories. Despite several decades of research, there is a lack of understanding of how general anesthetics induce a reversible coma-like state. Emerging evidence suggests that even brief exposure to general anesthesia may have a lasting impact on mature and especially developing brains. Commonly used anesthetics have been shown to destabilize dendritic spines and induce an enhanced plasticity state, with effects on cognition, motor functions, mood, and social behavior. Herein, we review the effects of the most widely used general anesthetics on dendritic spine dynamics and discuss functional and molecular correlates with action mechanisms. We consider the impact of neurodevelopment, anatomical location of neurons, and their neurochemical profile on neuroplasticity induction, and review the putative signaling pathways. It emerges that in addition to possible adverse effects, the stimulation of synaptic remodeling with the formation of new connections by general anesthetics may present tremendous opportunities for translational research and neurorehabilitation.


Assuntos
Anestésicos Gerais , Espinhas Dendríticas , Citoesqueleto de Actina , Anestesia Geral/efeitos adversos , Anestésicos Gerais/efeitos adversos , Plasticidade Neuronal
18.
Neurosci Lett ; 759: 136038, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34116197

RESUMO

Although produced largely in the periphery, gonadal steroids play a key role in regulating the development and functions of the central nervous system and have been implicated in several chronic neuropsychiatric disorders, with schizophrenia and Alzheimer's disease (AD) most prominent. Despite major differences in pathobiology and clinical manifestations, in both conditions, estrogen transpires primarily with protective effects, buffering the onset and progression of diseases at various levels. As a result, estrogen replacement therapy (ERT) emerges as one of the most widely discussed adjuvant interventions. In this review, we revisit evidence supporting the protective role of estrogen in schizophrenia and AD and consider putative cellular and molecular mechanisms. We explore the underlying functional processes relevant to the manifestation of these devastating conditions, with a focus on synaptic transmission and plasticity mechanisms. We discuss specific effects of estrogen deficit on neurotransmitter systems such as cholinergic, dopaminergic, serotoninergic, and glutamatergic. While the evidence from both, preclinical and clinical reports, in general, are supportive of the protective effects of estrogen from cognitive decline to synaptic pathology, numerous questions remain, calling for further research.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Animais , Terapia de Reposição de Estrogênios/métodos , Humanos
19.
J Alzheimers Dis ; 82(2): 485-491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34057078

RESUMO

Neuroblastoma cell line SH-SY5Y, due to its capacity to differentiate into neurons, easy handling, and low cost, is a common experimental model to study molecular events leading to Alzheimer's disease (AD). However, it is prevalently used in its undifferentiated state, which does not resemble neurons affected by the disease. Here, we show that the expression and localization of amyloid-ß protein precursor (AßPP), one of the key molecules involved in AD pathogenesis, is dramatically altered in SH-SY5Y cells fully differentiated by combined treatment with retinoic acid and BDNF. We show that insufficient differentiation of SH-SY5Y cells results in AßPP mislocalization.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Diferenciação Celular/fisiologia , Neurônios/fisiologia , Tretinoína , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Linhagem Celular Tumoral , Humanos , Microscopia Intravital/métodos , Modelos Biológicos , Neuroblastoma , Estresse Oxidativo , Proteólise , Tretinoína/metabolismo , Tretinoína/farmacologia
20.
Neurosci Lett ; 755: 135895, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33862141

RESUMO

The disproportionate evolutionary expansion of the human cerebral cortex with reinforcement of cholinergic innervations warranted a major rise in the functional and metabolic load of the conserved basal forebrain (BF) cholinergic system. Given that acetylcholine (ACh) regulates properties of the microtubule-associated protein (MAP) tau and promotes non-amyloidogenic processing of amyloid precursor protein (APP), growing neocortex predicts higher demands for ACh, while the emerging role of BF cholinergic projections in Aß clearance infers greater exposure of source neurons and their innervation fields to amyloid pathology. The higher exposure of evolutionary most recent cortical areas to the amyloid pathology of Alzheimer's disease (AD) with synaptic impairments and atrophy, therefore, might involve attenuated homeostatic effects of BF cholinergic projections, in addition to fall-outs of inherent processes of expanding association areas. This unifying model, thus, views amyloid pathology and loss of cholinergic cells as a quid pro quo of the allometric evolution of the human brain, which in combination with increase in life expectancy overwhelm the fine homeostatic balance and trigger the disease process.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Neurônios Colinérgicos/patologia , Rede de Modo Padrão/patologia , Filogenia , Doença de Alzheimer/metabolismo , Animais , Córtex Cerebral/metabolismo , Neurônios Colinérgicos/metabolismo , Rede de Modo Padrão/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...