Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6632): 567-572, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758082

RESUMO

Finely preserved fossil assemblages (lagerstätten) provide crucial insights into evolutionary innovations in deep time. We report an exceptionally preserved Early Triassic fossil assemblage, the Guiyang Biota, from the Daye Formation near Guiyang, South China. High-precision uranium-lead dating shows that the age of the Guiyang Biota is 250.83 +0.07/-0.06 million years ago. This is only 1.08 ± 0.08 million years after the severe Permian-Triassic mass extinction, and this assemblage therefore represents the oldest known Mesozoic lagerstätte found so far. The Guiyang Biota comprises at least 12 classes and 19 orders, including diverse fish fauna and malacostracans, revealing a trophically complex marine ecosystem. Therefore, this assemblage demonstrates the rapid rise of modern-type marine ecosystems after the Permian-Triassic mass extinction.


Assuntos
Organismos Aquáticos , Evolução Biológica , Biota , Fósseis , Animais , China , Extinção Biológica
2.
Proc Natl Acad Sci U S A ; 119(40): e2117146119, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161904

RESUMO

The long-term history of the Earth-Moon system as reconstructed from the geological record remains unclear when based on fossil growth bands and tidal laminations. A possibly more robust method is provided by the sedimentary record of Milankovitch cycles (climatic precession, obliquity, and orbital eccentricity), whose relative ratios in periodicity change over time as a function of a decreasing Earth spin rate and increasing lunar distance. However, for the critical older portion of Earth's history where information on Earth-Moon dynamics is sparse, suitable sedimentary successions in which these cycles are recorded remain largely unknown, leaving this method unexplored. Here we present results of cyclostratigraphic analysis and high-precision U-Pb zircon dating of the lower Paleoproterozoic Joffre Member of the Brockman Iron Formation, NW Australia, providing evidence for Milankovitch forcing of regular lithological alternations related to Earth's climatic precession and orbital eccentricity cycles. Combining visual and statistical tools to determine their hierarchical relation, we estimate an astronomical precession frequency of 108.6 ± 8.5 arcsec/y, corresponding to an Earth-Moon distance of 321,800 ± 6,500 km and a daylength of 16.9 ± 0.2 h at 2.46 Ga. With this robust cyclostratigraphic approach, we extend the oldest reliable datum for the lunar recession history by more than 1 billion years and provide a critical reference point for future modeling and geological investigation of Precambrian Earth-Moon system evolution.

3.
J Anal At Spectrom ; 36(7): 1466-1477, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34276120

RESUMO

Age determination of minerals using the U-Pb technique is widely used to quantify time in Earth's history. A number of geochronology laboratories produce the highest precision U-Pb dates employing the EARTHTIME 202Pb-205Pb-233U-235U tracer solution for isotope dilution, and the EARTHTIME ET100 and ET2000 solutions for system calibration and laboratory intercalibration. Here, we report ET100 and ET2000 solution data from the geochronology laboratory of University of Geneva obtained between 2008 and 2021 and compare the most recent data with results from the geochronology laboratories of Princeton University and ETH Zürich. This compilation demonstrates that (i) the choice of the thermal ionization mass spectrometer model has no influence on precision and accuracy of the data; (ii) the often observed excess scatter of apparent ET100 solution 206Pb/238U dates can be mitigated by more careful tracer-sample equilibration; and (iii) natural zircon reference materials are not suitable for evaluating intra-laboratory repeatability and inter-laboratory reproducibility, since they combine several phenomena of natural system complexities (especially domains of different age within the same zircon grain, and residual loss of radiogenic lead in domains of high decay damage after chemical abrasion pre-treatment). We provide our best estimates of apparent dates for the ET100 solution (206Pb/238U date, 100.173 ± 0.003 Ma), for ET2000 solution (207Pb/206Pb date, 1999.935 ± 0.063 Ma), as well as for natural reference zircon Temora-2 (206Pb/238U date, 417.353 ± 0.052 Ma). These data will allow U-Pb laboratories to evaluate their analytical performance and to independently calibrate non-EARTHTIME tracer solutions in use.

4.
Geostand Geoanal Res ; 42(4): 431-457, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30686958

RESUMO

Here, we document a detailed characterisation of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass at 19.2 carats (3.84 g) each; both came from placer deposits in the Ratnapura district, Sri Lanka. The U-Pb data are in both cases concordant within the uncertainties of decay constants and yield weighted mean 206Pb/238U ages (95% confidence uncertainty) of 530.26 Ma ± 0.05 Ma (GZ7) and 543.92 Ma ± 0.06 Ma (GZ8). Neither GZ7 nor GZ8 have been subjected to any gem enhancement by heating. Structure-related parameters correspond well with the calculated alpha doses of 1.48 × 1018 g-1 (GZ7) and 2.53 × 1018 g-1 (GZ8), respectively, and the (U-Th)/He ages of 438 Ma ± 3 Ma (2s) for GZ7 and 426 Ma ± 9 Ma (2s) for GZ8 are typical of unheated zircon from Sri Lanka. The mean U mass fractions are 680 µg g-1 (GZ7) and 1305 µg g-1 (GZ8). The two zircon samples are proposed as reference materials for SIMS (secondary ion mass spectrometry) U-Pb geochronology. In addition, GZ7 (Ti mass fractions 25.08 µg g-1 ± 0.18 µg g-1; 95% confidence uncertainty) may prove useful as reference material for Ti-in-zircon temperature estimates.

5.
Chimia (Aarau) ; 68(3): 124-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24801841

RESUMO

Precise determinations of the isotopic compositions of a variety of elements is a widely applied tool in Earth sciences. Isotope ratios are used to quantify rates of geological processes that occurred during the previous 4.5 billion years, and also at the present time. An outstanding application is geochronology, which utilizes the production of radiogenic daughter isotopes by the radioactive decay of parent isotopes. Geochronological tools, involving isotopic analysis of selected elements from smallest volumes of minerals by thermal ionization mass spectrometry, provide precise and accurate measurements of time throughout the geological history of our planet over nine orders of magnitude, from the accretion of the proto-planetary disk, to the timing of the last glaciation. This article summarizes the recent efforts of the Isotope Geochemistry, Geochronology and Thermochronology research group at the University of Geneva to advance the U-Pb geochronological tool to achieve unprecedented precision and accuracy, and presents two examples of its application to two significant open questions in Earth sciences: what are the triggers and timescales of volcanic supereruptions, and what were the causes of mass extinctions in the geological past, driven by global climatic and environmental deterioration?


Assuntos
Ciências da Terra/métodos , Espectrometria de Massas/métodos , Cristalização , Ciências da Terra/instrumentação , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Fenômenos Geológicos , Isótopos , Espectrometria de Massas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...