Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 21(1): 25, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454518

RESUMO

BACKGROUND: Understanding of the cerebrospinal fluid (CSF) circulation is essential for physiological studies and clinical diagnosis. Real-time phase contrast sequences (RT-PC) can quantify beat-to-beat CSF flow signals. However, the detailed effects of free-breathing on CSF parameters are not fully understood. This study aims to validate RT-PC's accuracy by comparing it with the conventional phase-contrast sequence (CINE-PC) and quantify the effect of free-breathing on CSF parameters at the intracranial and extracranial levels using a time-domain multiparametric analysis method. METHODS: Thirty-six healthy participants underwent MRI in a 3T scanner for CSF oscillations quantification at the cervical spine (C2-C3) and Sylvian aqueduct, using CINE-PC and RT-PC. CINE-PC uses 32 velocity maps to represent dynamic CSF flow over an average cardiac cycle, while RT-PC continuously quantifies CSF flow over 45-seconds. Free-breathing signals were recorded from 25 participants. RT-PC signal was segmented into independent cardiac cycle flow curves (Qt) and reconstructed into an averaged Qt. To assess RT-PC's accuracy, parameters such as segmented area, flow amplitude, and stroke volume (SV) of the reconstructed Qt from RT-PC were compared with those derived from the averaged Qt generated by CINE-PC. The breathing signal was used to categorize the Qt into expiratory or inspiratory phases, enabling the reconstruction of two Qt for inspiration and expiration. The breathing effects on various CSF parameters can be quantified by comparing these two reconstructed Qt. RESULTS: RT-PC overestimated CSF area (82.7% at aqueduct, 11.5% at C2-C3) compared to CINE-PC. Stroke volumes for CINE-PC were 615 mm³ (aqueduct) and 43 mm³ (spinal), and 581 mm³ (aqueduct) and 46 mm³ (spinal) for RT-PC. During thoracic pressure increase, spinal CSF net flow, flow amplitude, SV, and cardiac period increased by 6.3%, 6.8%, 14%, and 6%, respectively. Breathing effects on net flow showed a significant phase difference compared to the other parameters. Aqueduct-CSF flows were more affected by breathing than spinal-CSF. CONCLUSIONS: RT-PC accurately quantifies CSF oscillations in real-time and eliminates the need for cardiac synchronization, enabling the quantification of the cardiac and breathing components of CSF flow. This study quantifies the impact of free-breathing on CSF parameters, offering valuable physiological references for understanding the effects of breathing on CSF dynamics.


Assuntos
Ventrículos Cerebrais , Imageamento por Ressonância Magnética , Humanos , Ventrículos Cerebrais/fisiologia , Aqueduto do Mesencéfalo/diagnóstico por imagem , Aqueduto do Mesencéfalo/fisiologia , Respiração , Pressão , Líquido Cefalorraquidiano/diagnóstico por imagem , Líquido Cefalorraquidiano/fisiologia
2.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37968115

RESUMO

Quantifying the effects of free breathing on cerebral venous flow is crucial for understanding cerebral circulation mechanisms and clinical applications. Unlike conventional cine phase-contrast MRI sequences (CINE-PC), real-time phase-contrast MRI sequences (RT-PC) can provide a continuous beat-to-beat flow signal that makes it possible to quantify the effect of breathing on cerebral venous flow. In this study, we examined 28 healthy human participants, comprising of 14 males and 14 females. Blood flows in the right/left internal jugular veins in the extracranial plane and the superior sagittal sinus (SSS) and straight sinus in the intercranial plane were quantified using CINE-PC and RT-PC. The first objective of this study was to determine the accuracy of RT-PC in quantifying cerebral venous flow, relative to CINE-PC. The second, and main objective, was to quantify the effect of free breathing on cerebral venous flow, using a time-domain multiparameter analysis method. Our results showed that RT-PC can accurately quantify cerebral venous flow with a 2 × 2 mm2 spatial resolution and 75 ms/image time resolution. The mean flow rate, amplitude, stroke volume, and cardiac period of cerebral veins were significantly higher from the mid-end phase of expiration to the mid-end phase of inspiration. Breathing affected the mean flow rates in the jugular veins more than those in the SSS and straight sinus. Furthermore, the effects of free breathing on the flow rate of the left and right jugular veins were not synchronous. These new findings provide a useful reference for better understanding the mechanisms of cerebral circulation.


Assuntos
Veias Cerebrais , Masculino , Adulto , Feminino , Humanos , Veias Cerebrais/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular , Veias Jugulares/diagnóstico por imagem
3.
Biomedicines ; 11(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38001933

RESUMO

BACKGROUND: During a cardiac cycle, intracranial pressure is related to arterial entry into the cranium and its interaction with intracranial compliance. The arterial inflow is compensated by intracranial compliance and, initially, the flushing of cerebrospinal fluid (CSF) into the cervical subarachnoid spaces. Our objective is to analyze the interactions between intracranial arteriovenous exchange and cerebrospinal fluid oscillations. METHOD: A total of 23 patients (73 ± 8 years) with suspected chronic hydrocephalus (CH) underwent an infusion test and phase-contrast MRI. Rout is an important factor in the diagnosis of CH. Patients were divided into 2 populations: probableCH (Rout: resistance to CSF outflow) (Rout > 12 mmHg/mL/min, 13 patients) and unlikelyCH (Rout < 12 mmHg/mL/min, 10 patients). We measured the intracranial vascular volume (arteriovenous stroke volume: SVvasc) and CSF (CSF stroke volume at upper cervical level: SVCSF) volume variations during the cardiac cycle. RESULTS: In the whole population, we observed a significant correlation between SVvasc and SVCSF (R2 = 0.43; p = 0.0007). In the population unlikelyCH, this correlation was significant (R2 = 0.76; p = 0.001). In the population probableCH, this correlation was not significant (R2 = 0.17, p = 0.16). CONCLUSIONS: These results show that the link between the compliance of the oscillating CSF and the abrupt arterial inflow seems to be altered in CH. CSF oscillations between intracranial and cervical fluid spaces limit the impact of the abrupt arterial inflow.

4.
Fluids Barriers CNS ; 20(1): 65, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705096

RESUMO

BACKGROUND: Since arterial flow is the leading actor in neuro-fluids flow dynamics, it might be interesting to assess whether it is meaningful to study the arterial flow waveform in more detail and whether this provides new important information. Few studies have focused on determining the influence of heart rate variation over time on the arterial flow curve. Therefore, this study aimed to evaluate cerebral arterial flow waveforms at extracranial and intracranial compartments in young and elderly healthy adults, also considering systole and diastole phases. METHODS: Cine phase-contrast magnetic resonance imaging (CINE-PC MRI) was performed on twenty-eight healthy young volunteers (HYV) and twenty healthy elderly volunteers (HEV) to measure arterial blood flows at the extracranial and intracranial planes. A semi-automated protocol using MATLAB scripts was implemented to identify the main representative points in the arterial flow waveforms. Representative arterial profiles were estimated for each group. Moreover, the effects of age and sex on flow times, amplitude-related parameters, and parameters related to systole and diastole phases were evaluated at the extracranial and intracranial compartments. Student's t-test or Wilcoxon's test (depending on the normality of the distribution) was used to detect significant differences. RESULTS: In HYVs, significant differences were observed between extracranial and intracranial levels in parameters related to the AP1 amplitude. Besides the detected differences in pulsatility index (extracranial: 0.92 ± 0.20 vs. 1.28 ± 0.33; intracranial: 0.79 ± 0.15 vs. 1.14 ± 0.18, p < .001) and average flow (715 ± 136 vs. 607 ± 125 ml/min, p = .008) between HYV and HEV, differences in the amplitude value of the arterial flow profile feature points were also noted. Contrary to systole duration (HYV: 360 ± 29 ms; HEV: 364 ± 47 ms), diastole duration presented higher inter-individual variability in both populations (HYV: 472 ± 145 ms; HEV: 456 ± 106 ms). Our results also showed that, with age, it is mainly the diastolic phase that changes. Although no significant differences in duration were observed between the two populations, the mean flow value in the diastolic phase was significantly lower in HEV (extracranial: 628 ± 128 vs. 457 ± 111 ml/min; intracranial: 599 ± 121 vs. 473 ± 100 ml/min, p < .001). No significant differences were observed in the arterial flow parameters evaluated between females and males in either HYV or HEV. CONCLUSION: Our study provides a novel contribution on the influence of the cardiac cycle phases on cerebral arterial flow. The main contribution in this study concerns the identification of age-related alterations in cerebral blood flow, which occur mainly during the diastolic phase. Specifically, we observed that mean flow significantly decreases with age during diastole, whereas mean flow during systole is consistent.


Assuntos
Circulação Cerebrovascular , Idoso , Feminino , Masculino , Humanos , Adulto , Diástole , Sístole , Voluntários Saudáveis , Frequência Cardíaca
5.
Biomedicines ; 12(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275381

RESUMO

BACKGROUND: CSF dynamics are disturbed in chronic hydrocephalus (NPH). We hypothesise that these alterations reflect a disturbance of intracranial compliance. The aim of our study is to investigate the variations in intracranial hydrodynamics in NPH after ventricular shunt surgery. PATIENTS AND METHOD: We included 14 patients with definite NPH. All patients improved after ventriculoperitoneal shunting. The patients underwent an analysis of intracranial haemodynamics by phase-contrast MRI (pcMRI) preoperatively, at 6 months postoperatively, and at 1 year postoperatively. We analysed the dynamics of intraventricular CSF at the level of the aqueduct of Sylvius (SVAQU) and CSF at the level of the high cervical subarachnoid spaces (SVCERV). We calculated the ratio between SVAQU and SVCERV, called CSFRATIO, which reflects the participation of intraventricular pulsatility in overall intracranial CSF pulsatility. RESULTS: SVAQU significantly (p = 0.003) decreased from 240 ± 114 µL/cc to 214 ± 157 µL/cc 6 months after shunt placement. Six months after shunt placement, SVCERV significantly (p = 0.007) decreased from 627 ± 229 µL/cc to 557 ± 234 µL/cc. Twelve months after shunt placement, SVCERV continued to significantly (p = 0.001) decrease to 496 ± 234 µL/cc. CSFRATIO was not changed by surgery. CONCLUSIONS: CSF dynamics are altered by shunt placement and might be a useful marker of the shunt's effectiveness-especially if pressure values start to rise again. The detection of changes in CSF dynamics would require a reference postoperative pcMRI measurement for each patient.

6.
J Cardiovasc Dev Dis ; 9(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35200706

RESUMO

Left bundle branch block (LBBB) is associated with specific septal-to-lateral wall activation patterns which are strongly influenced by the intrinsic left ventricular (LV) contractility and myocardial scar localization. The objective of this study was to propose a computational-model-based interpretation of the different patterns of LV contraction observed in the case of LBBB and preserved contractility or myocardial scarring. Two-dimensional transthoracic echocardiography was used to obtain LV volumes and deformation patterns in three patients with LBBB: (1) a patient with non-ischemic dilated cardiomyopathy, (2) a patient with antero-septal myocardial scar, and (3) a patient with lateral myocardial scar. Scar was confirmed by the distribution of late gadolinium enhancement with cardiac magnetic resonance imaging (cMRI). Model parameters were evaluated manually to reproduce patient-derived data such as strain curves obtained from echocardiographic apical views. The model was able to reproduce the specific strain patterns observed in patients. A typical septal flash with pre-ejection shortening, rebound stretch, and delayed lateral wall activation was observed in the case of non-ischemic cardiomyopathy. In the case of lateral scar, the contractility of the lateral wall was significantly impaired and septal flash was absent. In the case of septal scar, septal flash and rebound stretch were also present as previously described in the literature. Interestingly, the model was also able to simulate the specific contractile properties of the myocardium, providing an excellent localization of LV scar in ischemic patients. The model was able to simulate the electromechanical delay and specific contractility patterns observed in patients with LBBB of ischemic and non-ischemic etiology. With further improvement and validation, this technique might be a useful tool for the diagnosis and treatment planning of heart failure patients needing CRT.

7.
PLoS One ; 15(3): e0229609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32126071

RESUMO

This paper proposes a model-based estimation of left ventricular (LV) pressure for the evaluation of constructive and wasted myocardial work of patients with aortic stenosis (AS). A model of the cardiovascular system is proposed, including descriptions of i) cardiac electrical activity, ii) elastance-based cardiac cavities, iii) systemic and pulmonary circulations and iv) heart valves. After a sensitivity analysis of model parameters, an identification strategy was implemented using a Monte-Carlo cross-validation approach. Parameter identification procedure consists in two steps for the estimation of LV pressures: step 1) from invasive, intraventricular measurements and step 2) from non-invasive data. The proposed approach was validated on data obtained from 12 patients with AS. The total relative errors between estimated and measured pressures were on average 11.9% and 12.27% and mean R2 were equal to 0.96 and 0.91, respectively for steps 1 and 2 of parameter identification strategy. Using LV pressures obtained from non-invasive measurements (step 2) and patient-specific simulations, Global Constructive (GCW), Wasted (GWW) myocardial Work and Global Work Efficiency (GWE) parameters were calculated. Correlations between measures and model-based estimations were 0.88, 0.80, 0.91 respectively for GCW, GWW and GWE. The main contributions concern the proposal of the parameter identification procedure, applied on an integrated cardiovascular model, able to reproduce LV pressure specifically to each AS patient, by non-invasive procedures, as well as a new method for the non-invasive estimation of constructive, wasted myocardial work and work efficiency in AS.


Assuntos
Estenose da Valva Aórtica/fisiopatologia , Modelos Cardiovasculares , Pressão Ventricular/fisiologia , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , Feminino , Humanos , Masculino , Método de Monte Carlo , Contração Miocárdica/fisiologia , Modelagem Computacional Específica para o Paciente , Estudos Prospectivos , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...