Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 219, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828292

RESUMO

Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.

2.
Structure ; 31(12): 1510-1517.e1, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37536337

RESUMO

Electron diffraction from three dimensional crystals, as a technique for solving molecular structures, is rapidly increasing in popularity. The development of methodology and software has borrowed, to great effect, from macromolecular X-ray crystallography. However, standardization lags behind the development of the technique, and practitioners are forced to work with inadequate data formats that are unable to capture a full description of their experiments. This creates obstacles that are increasingly difficult to overcome as experiments become ever faster and the need for data autoprocessing becomes more pressing. We present a data format standard based on best practice from macromolecular crystallography and demonstrate how the adoption of this standard enabled autoprocessing of datasets collected with a high-throughput detector system.


Assuntos
Elétrons , Software , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Substâncias Macromoleculares/química
3.
Sci Adv ; 9(25): eadg7865, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343087

RESUMO

Inhibitor discovery for emerging drug-target proteins is challenging, especially when target structure or active molecules are unknown. Here, we experimentally validate the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions-unbiased toward any specific target. We performed a protein sequence-conditioned sampling on the generative foundation model to design small-molecule inhibitors for two dissimilar targets: the spike protein receptor-binding domain (RBD) and the main protease from SARS-CoV-2. Despite using only the target sequence information during the model inference, micromolar-level inhibition was observed in vitro for two candidates out of four synthesized for each target. The most potent spike RBD inhibitor exhibited activity against several variants in live virus neutralization assays. These results establish that a single, broadly deployable generative foundation model for accelerated inhibitor discovery is effective and efficient, even in the absence of target structure or binder information.


Assuntos
Anticorpos Antivirais , COVID-19 , Humanos , Anticorpos Antivirais/química , SARS-CoV-2/metabolismo , Ligação Proteica , Sequência de Aminoácidos
4.
Nat Chem ; 15(7): 998-1005, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37217786

RESUMO

γ-Amino acids can play important roles in the biological activities of natural products; however, the ribosomal incorporation of γ-amino acids into peptides is challenging. Here we report how a selection campaign employing a non-canonical peptide library containing cyclic γ2,4-amino acids resulted in the discovery of very potent inhibitors of the SARS-CoV-2 main protease (Mpro). Two kinds of cyclic γ2,4-amino acids, cis-3-aminocyclobutane carboxylic acid (γ1) and (1R,3S)-3-aminocyclopentane carboxylic acid (γ2), were ribosomally introduced into a library of thioether-macrocyclic peptides. One resultant potent Mpro inhibitor (half-maximal inhibitory concentration = 50 nM), GM4, comprising 13 residues with γ1 at the fourth position, manifests a 5.2 nM dissociation constant. An Mpro:GM4 complex crystal structure reveals the intact inhibitor spans the substrate binding cleft. The γ1 interacts with the S1' catalytic subsite and contributes to a 12-fold increase in proteolytic stability compared to its alanine-substituted variant. Knowledge of interactions between GM4 and Mpro enabled production of a variant with a 5-fold increase in potency.


Assuntos
Aminoácidos , COVID-19 , Aminoácidos/química , Antivirais/química , Ácidos Carboxílicos , Peptídeos/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , SARS-CoV-2/metabolismo
5.
J Chem Inf Model ; 63(9): 2866-2880, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37058135

RESUMO

SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC50 values ranging from 1.5 to 241 µM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC50 value comparable to its measured IC50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N-pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2 , Inteligência Artificial , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
7.
Nat Commun ; 14(1): 1545, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941262

RESUMO

The main protease from SARS-CoV-2 (Mpro) is responsible for cleavage of the viral polyprotein. Mpro self-processing is called maturation, and it is crucial for enzyme dimerization and activity. Here we use C145S Mpro to study the structure and dynamics of N-terminal cleavage in solution. Native mass spectroscopy analysis shows that mixed oligomeric states are composed of cleaved and uncleaved particles, indicating that N-terminal processing is not critical for dimerization. A 3.5 Å cryo-EM structure provides details of Mpro N-terminal cleavage outside the constrains of crystal environment. We show that different classes of inhibitors shift the balance between oligomeric states. While non-covalent inhibitor MAT-POS-e194df51-1 prevents dimerization, the covalent inhibitor nirmatrelvir induces the conversion of monomers into dimers, even with intact N-termini. Our data indicates that the Mpro dimerization is triggered by induced fit due to covalent linkage during substrate processing rather than the N-terminal processing.


Assuntos
Proteases 3C de Coronavírus , SARS-CoV-2 , Antivirais , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/química
8.
IUCrJ ; 10(Pt 3): 270-287, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36952226

RESUMO

Three-dimensional electron diffraction (3DED) from nanocrystals of biological macromolecules requires the use of very small crystals. These are typically less than 300 nm-thick in the direction of the electron beam due to the strong interaction between electrons and matter. In recent years, focused-ion-beam (FIB) milling has been used in the preparation of thin samples for 3DED. These instruments typically use a gallium liquid metal ion source. Inductively coupled plasma (ICP) sources in principle offer faster milling rates. Little work has been done to quantify the damage these sources cause to delicate biological samples at cryogenic temperatures. Here, an analysis of the effect that milling with plasma FIB (pFIB) instrumentation has on lysozyme crystals is presented. This work evaluates both argon and xenon plasmas and compares them with crystals milled with a gallium source. A milling protocol was employed that utilizes an overtilt to produce wedge-shaped lamellae with a shallow thickness gradient which yielded very thin crystalline samples. 3DED data were then acquired and standard data-processing statistics were employed to assess the quality of the diffraction data. An upper bound to the depth of the pFIB-milling damage layer of between 42.5 and 50 nm is reported, corresponding to half the thickness of the thinnest lamellae that resulted in usable diffraction data. A lower bound of between 32.5 and 40 nm is also reported, based on a literature survey of the minimum amount of diffracting material required for 3DED.

9.
J Biol Chem ; 299(3): 102989, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758803

RESUMO

The human gastrointestinal (GI) tract harbors diverse microbial communities collectively known as the gut microbiota that exert a profound impact on human health and disease. The repartition and availability of sialic acid derivatives in the gut have a significant impact on the modulation of gut microbes and host susceptibility to infection and inflammation. Although N-acetylneuraminic acid (Neu5Ac) is the main form of sialic acids in humans, the sialic acid family regroups more than 50 structurally and chemically distinct modified derivatives. In the GI tract, sialic acids are found in the terminal location of mucin glycan chains constituting the mucus layer and also come from human milk oligosaccharides in the infant gut or from meat-based foods in adults. The repartition of sialic acid in the GI tract influences the gut microbiota composition and pathogen colonization. In this review, we provide an update on the mechanisms underpinning sialic acid utilization by gut microbes, focusing on sialidases, transporters, and metabolic enzymes.


Assuntos
Microbioma Gastrointestinal , Ácido N-Acetilneuramínico , Lactente , Humanos , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos/metabolismo , Mucinas/metabolismo , Polissacarídeos/metabolismo
10.
J Med Chem ; 66(4): 2663-2680, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36757959

RESUMO

Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.


Assuntos
Antivirais , COVID-19 , Proteases 3C de Coronavírus , Nitrilas , SARS-CoV-2 , Inibidores de Protease Viral , Humanos , Antivirais/farmacologia , Cisteína/química , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Inibidores de Protease Viral/farmacologia
11.
Essays Biochem ; 67(3): 399-414, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36805644

RESUMO

Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (ß/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel ß-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.


Assuntos
Oligossacarídeos , alfa-L-Fucosidase , Animais , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/química , alfa-L-Fucosidase/metabolismo , Oligossacarídeos/química , Fucose/química , Especificidade por Substrato , Mamíferos/metabolismo
12.
Acta Crystallogr D Struct Biol ; 78(Pt 6): 752-769, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35647922

RESUMO

In macromolecular crystallography, radiation damage limits the amount of data that can be collected from a single crystal. It is often necessary to merge data sets from multiple crystals; for example, small-wedge data collections from micro-crystals, in situ room-temperature data collections and data collection from membrane proteins in lipidic mesophases. Whilst the indexing and integration of individual data sets may be relatively straightforward with existing software, merging multiple data sets from small wedges presents new challenges. The identification of a consensus symmetry can be problematic, particularly in the presence of a potential indexing ambiguity. Furthermore, the presence of non-isomorphous or poor-quality data sets may reduce the overall quality of the final merged data set. To facilitate and help to optimize the scaling and merging of multiple data sets, a new program, xia2.multiplex, has been developed which takes data sets individually integrated with DIALS and performs symmetry analysis, scaling and merging of multi-crystal data sets. xia2.multiplex also performs analysis of various pathologies that typically affect multi-crystal data sets, including non-isomorphism, radiation damage and preferential orientation. After the description of a number of use cases, the benefit of xia2.multiplex is demonstrated within a wider autoprocessing framework in facilitating a multi-crystal experiment collected as part of in situ room-temperature fragment-screening experiments on the SARS-CoV-2 main protease.


Assuntos
COVID-19 , Cristalografia por Raios X , Análise de Dados , Humanos , Substâncias Macromoleculares/química , SARS-CoV-2
13.
J Med Chem ; 65(11): 7682-7696, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35549342

RESUMO

The SARS-CoV-2 main protease (Mpro) is a medicinal chemistry target for COVID-19 treatment. Given the clinical efficacy of ß-lactams as inhibitors of bacterial nucleophilic enzymes, they are of interest as inhibitors of viral nucleophilic serine and cysteine proteases. We describe the synthesis of penicillin derivatives which are potent Mpro inhibitors and investigate their mechanism of inhibition using mass spectrometric and crystallographic analyses. The results suggest that ß-lactams have considerable potential as Mpro inhibitors via a mechanism involving reaction with the nucleophilic cysteine to form a stable acyl-enzyme complex as shown by crystallographic analysis. The results highlight the potential for inhibition of viral proteases employing nucleophilic catalysis by ß-lactams and related acylating agents.


Assuntos
Tratamento Farmacológico da COVID-19 , Cisteína , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Humanos , Penicilinas , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2 , beta-Lactamas
14.
PLoS Biol ; 19(12): e3001498, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936658

RESUMO

The human gut symbiont Ruminococcus gnavus displays strain-specific repertoires of glycoside hydrolases (GHs) contributing to its spatial location in the gut. Sequence similarity network analysis identified strain-specific differences in blood-group endo-ß-1,4-galactosidase belonging to the GH98 family. We determined the substrate and linkage specificities of GH98 from R. gnavus ATCC 29149, RgGH98, against a range of defined oligosaccharides and glycoconjugates including mucin. We showed by HPAEC-PAD and LC-FD-MS/MS that RgGH98 is specific for blood group A tetrasaccharide type II (BgA II). Isothermal titration calorimetry (ITC) and saturation transfer difference (STD) NMR confirmed RgGH98 affinity for blood group A over blood group B and H antigens. The molecular basis of RgGH98 strict specificity was further investigated using a combination of glycan microarrays, site-directed mutagenesis, and X-ray crystallography. The crystal structures of RgGH98 in complex with BgA trisaccharide (BgAtri) and of RgGH98 E411A with BgA II revealed a dedicated hydrogen network of residues, which were shown by site-directed mutagenesis to be critical to the recognition of the BgA epitope. We demonstrated experimentally that RgGH98 is part of an operon of 10 genes that is overexpresssed in vitro when R. gnavus ATCC 29149 is grown on mucin as sole carbon source as shown by RNAseq analysis and RT-qPCR confirmed RgGH98 expression on BgA II growth. Using MALDI-ToF MS, we showed that RgGH98 releases BgAtri from mucin and that pretreatment of mucin with RgGH98 confered R. gnavus E1 the ability to grow, by enabling the E1 strain to metabolise BgAtri and access the underlying mucin glycan chain. These data further support that the GH repertoire of R. gnavus strains enable them to colonise different nutritional niches in the human gut and has potential applications in diagnostic and therapeutics against infection.


Assuntos
Clostridiales/metabolismo , Mucina-1/metabolismo , Sistema ABO de Grupos Sanguíneos/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Clostridiales/genética , Clostridiales/fisiologia , Microbioma Gastrointestinal , Trato Gastrointestinal , Glicosídeo Hidrolases/metabolismo , Humanos , Mucinas/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Ruminococcus/genética , Ruminococcus/metabolismo , Especificidade por Substrato , Espectrometria de Massas em Tandem/métodos
15.
Chem Sci ; 12(41): 13686-13703, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34760153

RESUMO

The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.

16.
PLoS One ; 16(10): e0256070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653190

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in respiratory disease and otitis media. Important for NTHi survival, colonization and persistence in vivo is the Sap (sensitivity to antimicrobial peptides) ABC transporter system. Current models propose a direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conformation, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydrophobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri- peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal structures of SapA have identified surface interactions with heme and dsRNA. Heme binds SapA weakly (Kd 282 µM) through a surface exposed histidine, while the dsRNA is coordinated via residues which constitute part of a conserved motif (estimated Kd 4.4 µM). The RNA affinity falls within the range observed for characterized RNA/protein complexes. Overall, we describe in molecular-detail the interactions of SapA with heme and dsRNA and propose a role for SapA in the transport of di- or tri-peptides.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte/metabolismo , Haemophilus influenzae/metabolismo , Heme/metabolismo , RNA de Cadeia Dupla/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Antibacterianos/farmacologia , Proteínas de Transporte/genética , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/genética , Otite Média/microbiologia , Otite Média/patologia , Conformação Proteica , Transporte Proteico/fisiologia , RNA de Cadeia Dupla/genética , Motivos de Ligação ao RNA/genética , Fatores de Virulência/metabolismo
18.
Sci Rep ; 11(1): 13208, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168183

RESUMO

Effective agents to treat coronavirus infection are urgently required, not only to treat COVID-19, but to prepare for future outbreaks. Repurposed anti-virals such as remdesivir and human anti-inflammatories such as barcitinib have received emergency approval but their overall benefits remain unclear. Vaccines are the most promising prospect for COVID-19, but will need to be redeveloped for any future coronavirus outbreak. Protecting against future outbreaks requires the identification of targets that are conserved between coronavirus strains and amenable to drug discovery. Two such targets are the main protease (Mpro) and the papain-like protease (PLpro) which are essential for the coronavirus replication cycle. We describe the discovery of two non-antiviral therapeutic agents, the caspase-1 inhibitor SDZ 224015 and Tarloxotinib that target Mpro and PLpro, respectively. These were identified through extensive experimental screens of the drug repurposing ReFRAME library of 12,000 therapeutic agents. The caspase-1 inhibitor SDZ 224015, was found to be a potent irreversible inhibitor of Mpro (IC50 30 nM) while Tarloxotinib, a clinical stage epidermal growth factor receptor inhibitor, is a sub micromolar inhibitor of PLpro (IC50 300 nM, Ki 200 nM) and is the first reported PLpro inhibitor with drug-like properties. SDZ 224015 and Tarloxotinib have both undergone safety evaluation in humans and hence are candidates for COVID-19 clinical evaluation.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Reposicionamento de Medicamentos , Oligopeptídeos/química , Linhagem Celular , Humanos , Serpinas/química , Proteínas Virais/química
19.
Cell Chem Biol ; 28(12): 1795-1806.e5, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34174194

RESUMO

Designing covalent inhibitors is increasingly important, although it remains challenging. Here, we present covalentizer, a computational pipeline for identifying irreversible inhibitors based on structures of targets with non-covalent binders. Through covalent docking of tailored focused libraries, we identify candidates that can bind covalently to a nearby cysteine while preserving the interactions of the original molecule. We found âˆ¼11,000 cysteines proximal to a ligand across 8,386 complexes in the PDB. Of these, the protocol identified 1,553 structures with covalent predictions. In a prospective evaluation, five out of nine predicted covalent kinase inhibitors showed half-maximal inhibitory concentration (IC50) values between 155 nM and 4.5 µM. Application against an existing SARS-CoV Mpro reversible inhibitor led to an acrylamide inhibitor series with low micromolar IC50 values against SARS-CoV-2 Mpro. The docking was validated by 12 co-crystal structures. Together these examples hint at the vast number of covalent inhibitors accessible through our protocol.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , SARS-CoV-2/enzimologia , Proteínas da Matriz Viral/antagonistas & inibidores , Acrilamida/química , Acrilamida/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Biologia Computacional/métodos , Bases de Dados de Proteínas , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , SARS-CoV-2/isolamento & purificação , Proteínas da Matriz Viral/metabolismo
20.
Chem Commun (Camb) ; 57(12): 1430-1433, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33462575

RESUMO

The main viral protease (Mpro) of SARS-CoV-2 is a nucleophilic cysteine hydrolase and a current target for anti-viral chemotherapy. We describe a high-throughput solid phase extraction coupled to mass spectrometry Mpro assay. The results reveal some ß-lactams, including penicillin esters, are active site reacting Mpro inhibitors, thus highlighting the potential of acylating agents for Mpro inhibition.


Assuntos
Antivirais/farmacologia , Cisteína Endopeptidases/efeitos dos fármacos , Espectrometria de Massas/métodos , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , beta-Lactamas/farmacologia , Acilação , Antivirais/química , COVID-19/virologia , Domínio Catalítico , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , beta-Lactamas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...