Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Diabetes Care ; 47(2): 239-245, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38087932

RESUMO

OBJECTIVE: C-peptide and islet autoantibodies are key type 1 diabetes biomarkers, typically requiring venous sampling, which limits their utility. We assessed transdermal capillary blood (TCB) collection as a practical alternative. RESEARCH DESIGN AND METHODS: Ninety-one individuals (71 with type 1 diabetes, 20 control; individuals with type 1 diabetes: aged median 14.8 years [interquartile range (IQR) 9.1-17.1], diabetes duration 4.0 years [1.5-7.7]; control individuals: 42.2 years [38.0-52.1]) underwent contemporaneous venous and TCB sampling for measurement of plasma C-peptide. Participants with type 1 diabetes also provided venous serum and plasma, and TCB plasma for measurement of autoantibodies to glutamate decarboxylase, islet antigen-2, and zinc transporter 8. The ability of TCB plasma to detect significant endogenous insulin secretion (venous C-peptide ≥200 pmol/L) was compared along with agreement in levels, using Bland-Altman. Venous serum was compared with venous and TCB plasma for detection of autoantibodies, using established thresholds. Acceptability was assessed by age-appropriate questionnaire. RESULTS: Transdermal sampling took a mean of 2.35 min (SD 1.49). Median sample volume was 50 µL (IQR 40-50) with 3 of 91 (3.3%) failures, and 13 of 88 (14.7%) <35 µL. TCB C-peptide showed good agreement with venous plasma (mean venous ln[C-peptide] - TCB ln[C-peptide] = 0.008, 95% CI [-0.23, 0.29], with 100% [36 of 36] sensitivity/100% [50 of 50] specificity to detect venous C-peptide ≥200 pmol/L). Where venous serum in multiple autoantibody positive TCB plasma agreed in 22 of 32 (sensitivity 69%), comparative specificity was 35 of 36 (97%). TCB was preferred to venous sampling (type 1 diabetes: 63% vs. 7%; 30% undecided). CONCLUSIONS: Transdermal capillary testing for C-peptide is a sensitive, specific, and acceptable alternative to venous sampling; TCB sampling for islet autoantibodies needs further assessment.


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Criança , Humanos , Idoso , Peptídeo C , Autoanticorpos , Coleta de Amostras Sanguíneas , Biomarcadores , Glutamato Descarboxilase
2.
Commun Med (Lond) ; 3(1): 136, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794142

RESUMO

BACKGROUND: Monogenic diabetes presents opportunities for precision medicine but is underdiagnosed. This review systematically assessed the evidence for (1) clinical criteria and (2) methods for genetic testing for monogenic diabetes, summarized resources for (3) considering a gene or (4) variant as causal for monogenic diabetes, provided expert recommendations for (5) reporting of results; and reviewed (6) next steps after monogenic diabetes diagnosis and (7) challenges in precision medicine field. METHODS: Pubmed and Embase databases were searched (1990-2022) using inclusion/exclusion criteria for studies that sequenced one or more monogenic diabetes genes in at least 100 probands (Question 1), evaluated a non-obsolete genetic testing method to diagnose monogenic diabetes (Question 2). The risk of bias was assessed using the revised QUADAS-2 tool. Existing guidelines were summarized for questions 3-5, and review of studies for questions 6-7, supplemented by expert recommendations. Results were summarized in tables and informed recommendations for clinical practice. RESULTS: There are 100, 32, 36, and 14 studies included for questions 1, 2, 6, and 7 respectively. On this basis, four recommendations for who to test and five on how to test for monogenic diabetes are provided. Existing guidelines for variant curation and gene-disease validity curation are summarized. Reporting by gene names is recommended as an alternative to the term MODY. Key steps after making a genetic diagnosis and major gaps in our current knowledge are highlighted. CONCLUSIONS: We provide a synthesis of current evidence and expert opinion on how to use precision diagnostics to identify individuals with monogenic diabetes.


Some diabetes types, called monogenic diabetes, are caused by changes in a single gene. It is important to know who has this kind of diabetes because treatment can differ from that of other types of diabetes. Some treatments also work better than others for specific types, and some people can for example change from insulin injections to tablets. In addition, relatives can be offered a test to see if they are at risk. Genetic testing is needed to diagnose monogenic diabetes but is expensive, so it's not possible to test every person with diabetes for it. We evaluated published research on who should be tested and what test to use. Based on this, we provide recommendations for doctors and health care providers on how to implement genetic testing for monogenic diabetes.

3.
medRxiv ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37131594

RESUMO

Monogenic forms of diabetes present opportunities for precision medicine as identification of the underlying genetic cause has implications for treatment and prognosis. However, genetic testing remains inconsistent across countries and health providers, often resulting in both missed diagnosis and misclassification of diabetes type. One of the barriers to deploying genetic testing is uncertainty over whom to test as the clinical features for monogenic diabetes overlap with those for both type 1 and type 2 diabetes. In this review, we perform a systematic evaluation of the evidence for the clinical and biochemical criteria used to guide selection of individuals with diabetes for genetic testing and review the evidence for the optimal methods for variant detection in genes involved in monogenic diabetes. In parallel we revisit the current clinical guidelines for genetic testing for monogenic diabetes and provide expert opinion on the interpretation and reporting of genetic tests. We provide a series of recommendations for the field informed by our systematic review, synthesizing evidence, and expert opinion. Finally, we identify major challenges for the field and highlight areas for future research and investment to support wider implementation of precision diagnostics for monogenic diabetes.

4.
BMC Med ; 21(1): 190, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226224

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is a CD4+ T cell-driven autoimmune disease characterized by the destruction of insulin-producing pancreatic ß-cells by CD8+ T cells. Achieving glycemic targets in T1D remains challenging in clinical practice; new treatments aim to halt autoimmunity and prolong ß-cell survival. IMCY-0098 is a peptide derived from human proinsulin that contains a thiol-disulfide oxidoreductase motif at the N-terminus and was developed to halt disease progression by promoting the specific elimination of pathogenic T cells. METHODS: This first-in-human, 24-week, double-blind phase 1b study evaluated the safety of three dosages of IMCY-0098 in adults diagnosed with T1D < 6 months before study start. Forty-one participants were randomized to receive four bi-weekly injections of placebo or increasing doses of IMCY-0098 (dose groups A/B/C received 50/150/450 µg for priming followed by three further administrations of 25/75/225 µg, respectively). Multiple T1D-related clinical parameters were also assessed to monitor disease progression and inform future development. Long-term follow-up to 48 weeks was also conducted in a subset of patients. RESULTS: Treatment with IMCY-0098 was well tolerated with no systemic reactions; a total of 315 adverse events (AEs) were reported in 40 patients (97.6%) and were related to study treatment in 29 patients (68.3%). AEs were generally mild; no AE led to discontinuation of the study or death. No significant decline in C-peptide was noted from baseline to Week 24 for dose A, B, C, or placebo (mean change - 0.108, - 0.041, - 0.040, and - 0.012, respectively), suggesting no disease progression. CONCLUSIONS: Promising safety profile and preliminary clinical response data support the design of a phase 2 study of IMCY-0098 in patients with recent-onset T1D. TRIAL REGISTRATION: IMCY-T1D-001: ClinicalTrials.gov NCT03272269; EudraCT: 2016-003514-27; and IMCY-T1D-002: ClinicalTrials.gov NCT04190693; EudraCT: 2018-003728-35.


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Linfócitos T CD8-Positivos , Imunoterapia , Peptídeo C , Autoimunidade , Progressão da Doença
5.
Diabetes Res Clin Pract ; 185: 109226, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35122907

RESUMO

AIMS: We previously demonstrated that antennary fucosylated N-glycans on plasma proteins are regulated by HNF1A and can identify cases of Maturity-Onset Diabetes of the Young caused by HNF1A variants (HNF1A-MODY). Based on literature data, we further postulated that N-glycans with best diagnostic value mostly originate from alpha-1-acid glycoprotein (AGP). In this study we analyzed fucosylation of AGP in subjects with HNF1A-MODY and other types of diabetes aiming to evaluate its diagnostic potential. METHODS: A recently developed LC-MS method for AGP N-glycopeptide analysis was utilized in two independent cohorts: a) 466 subjects with different diabetes subtypes to test the fucosylation differences, b) 98 selected individuals to test the discriminative potential for pathogenic HNF1A variants. RESULTS: Our results showed significant reduction in AGP fucosylation associated to HNF1A-MODY when compared to other diabetes subtypes. Additionally, ROC curve analysis confirmed significant discriminatory potential of individual fucosylated AGP glycopeptides, where the best performing glycopeptide had an AUC of 0.94 (95% CI 0.90-0.99). CONCLUSIONS: A glycopeptide based diagnostic tool would be beneficial for patient stratification by providing information about the functionality of HNF1A. It could assist the interpretation of DNA sequencing results and be a useful addition to the differential diagnostic process.


Assuntos
Diabetes Mellitus Tipo 2 , Glicopeptídeos , Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Glicopeptídeos/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Mutação , Polissacarídeos/metabolismo
6.
Glycobiology ; 32(3): 230-238, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34939081

RESUMO

Maturity-onset diabetes of the young due to hepatocyte nuclear factor-1 alpha variants (HNF1A-MODY) causes monogenic diabetes. Individuals carrying damaging variants in HNF1A show decreased levels of α1-3,4 fucosylation, as demonstrated on antennary fucosylation of blood plasma N-glycans. The excellent diagnostic performance of this glycan biomarker in blood plasma N-glycans of individuals with HNF1A-MODY has been demonstrated using liquid chromatography methods. Here, we have developed a high-throughput exoglycosidase plate-based assay to measure α1-3,4 fucosylation levels in blood plasma samples. The assay has been optimized and its validity tested using 1000 clinical samples from a cohort of individuals with young-adult onset diabetes including cases with HNF1A-MODY. The α1-3,4 fucosylation levels in blood plasma showed a good differentiating power in identifying cases with damaging HNF1A variants, as demonstrated by receiver operating characteristic curve analysis with the AUC values of 0.87 and 0.95. This study supports future development of a simple diagnostic test to measure this glycan biomarker for application in a clinical setting.


Assuntos
Diabetes Mellitus Tipo 2 , Glicosídeo Hidrolases , Adulto , Biomarcadores , Proteína C-Reativa , Diabetes Mellitus Tipo 2/diagnóstico , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Mutação
7.
Glycoconj J ; 38(3): 375-386, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765222

RESUMO

Antennary fucosylation alterations in plasma glycoproteins have been previously proposed and tested as a biomarker for differentiation of maturity onset diabetes of the young (MODY) patients carrying a functional mutation in the HNF1A gene. Here, we developed a novel LC-based workflow to analyze blood plasma N-glycan fucosylation in 320 diabetes cases with clinical features matching those at risk of HNF1A-MODY. Fucosylation levels measured in two independent research centers by using similar LC-based methods were correlated to evaluate the interlaboratory performance of the biomarker. The interlaboratory study showed good correlation between fucosylation levels measured for the 320 cases in the two centers with the correlation coefficient (r) of up to 0.88 for a single trait A3FG3S2. The improved chromatographic separation allowed the identification of six single glycan traits and a derived antennary fucosylation trait that were able to differentiate individuals carrying pathogenic mutations from benign or no HNF1A mutation cases, as determined by the area under the curve (AUC) of up to 0.94. The excellent (r = 0.88) interlaboratory performance of the glycan biomarker for HNF1A-MODY further supports the development of a clinically relevant diagnostic test measuring antennary fucosylation levels.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Polissacarídeos/sangue , Polissacarídeos/metabolismo , Adulto , Biomarcadores , Diabetes Mellitus Tipo 2/genética , Feminino , Regulação da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Laboratórios , Masculino , Mutação , Variações Dependentes do Observador , Polissacarídeos/química , Adulto Jovem
8.
J Breath Res ; 15(1): 017101, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33027776

RESUMO

Ketone testing is an important element of the self-management of illness in type 1 diabetes. The aim of the present study was to see if a breath test for acetone could be used to predict quantitatively the levels of the ketone betahydroxybutyrate in the blood of those with type 1 diabetes, and thus be used as an alternative to capillary testing for ketones. Simultaneous capillary ketones and breath acetone were measured in 72 individuals with type 1 diabetes attending a diabetes clinic and on 9 individuals admitted to hospital with diabetic ketoacidosis. Capillary blood measurements ranged from 0.1 mmol l-1 (the lower limit of the ketone monitor) to over 7 mmol l-1, with breath acetone varying between 0.25 and 474 parts per million by volume. The two variables were found to be correlated and allowed modelling to be carried out which separated breath acetone levels into three categories corresponding to normal, elevated and 'at risk' levels of blood ketones. The results on this limited set of participants suggest that a breath acetone test could be a simple, non-invasive substitute for capillary ketone measurement in type 1 diabetes.


Assuntos
Ácido 3-Hidroxibutírico/sangue , Acetona/análise , Testes Respiratórios/métodos , Diabetes Mellitus Tipo 1/sangue , Capilares/metabolismo , Cetoacidose Diabética/sangue , Humanos , Cetonas/sangue , Modelos Biológicos , Valores de Referência , Fatores de Risco
9.
Endocrinol Diabetes Metab ; 3(3): e00130, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32704555

RESUMO

AIMS: The GLP1 agonist lixisenatide is glucagonostatic and reduces post-prandial blood glucose (PPBG) in type 2 diabetes. This study investigates its impact in type 1 diabetes (T1D). METHODS: In a blinded, crossover trial, 25 patients with T1D were randomised to 4 weeks adjunctive treatment with lixisenatide (L) or placebo (P), with a 4-week washout period. The primary outcome was percentage of 3 hours PPBG in target (4-10 mmol/L) assessed by CGM before and after treatment. Participants also underwent post-treatment standardised mixed meal test (MMT, n = 25) and hyperinsulinaemic hypoglycaemic clamp (n = 15). RESULTS: PPBG CGM readings in target were similar between L vs P (Mean % ± SE, breakfast 45.4 ± 6.0 vs 44.3 ± 6.0, P = .48, lunch 45.5 ± 5.8 vs 50.6 ± 5.3, P = .27 and dinner 43.0 ± 6.7 vs 47.7 ± 5.6, P = .30). HbA1C was similar between L vs P (64.7 ± 1.6 vs 64.1 ± 1.6 mmol/mol, P = .30). Prandial insulin fell after lixisenatide (dose change -0.7 ± 0.6 vs +2.4 ± 0.7 units/d, P = .004), but basal insulin dose was similar between groups. The post-MMT glucose area under the curve (AUC) was lower with L than P (392.0 ± 167.7 vs 628.1 ± 132.5 mmol/L × min, P < .001), as was the corresponding glucagon AUC (140.0 ± 110.0 vs 304.2 ± 148.2 nmol/L × min, P < .001). Glucagon and counter-regulatory hormone values at a blood glucose of 2.4 mmol/L during the hypoglycaemic clamp were similar between L and P. CONCLUSION: In T1D, PPBG values were not altered by adjunctive lixisenatide although prandial insulin dose fell. Glucose and glucagon level during an MMT were significantly lower after lixisenatide, without affecting counter-regulatory response during hypoglycaemia.

10.
Diagn Progn Res ; 4: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607451

RESUMO

BACKGROUND: There is much interest in the use of prognostic and diagnostic prediction models in all areas of clinical medicine. The use of machine learning to improve prognostic and diagnostic accuracy in this area has been increasing at the expense of classic statistical models. Previous studies have compared performance between these two approaches but their findings are inconsistent and many have limitations. We aimed to compare the discrimination and calibration of seven models built using logistic regression and optimised machine learning algorithms in a clinical setting, where the number of potential predictors is often limited, and externally validate the models. METHODS: We trained models using logistic regression and six commonly used machine learning algorithms to predict if a patient diagnosed with diabetes has type 1 diabetes (versus type 2 diabetes). We used seven predictor variables (age, BMI, GADA islet-autoantibodies, sex, total cholesterol, HDL cholesterol and triglyceride) using a UK cohort of adult participants (aged 18-50 years) with clinically diagnosed diabetes recruited from primary and secondary care (n = 960, 14% with type 1 diabetes). Discrimination performance (ROC AUC), calibration and decision curve analysis of each approach was compared in a separate external validation dataset (n = 504, 21% with type 1 diabetes). RESULTS: Average performance obtained in internal validation was similar in all models (ROC AUC ≥ 0.94). In external validation, there were very modest reductions in discrimination with AUC ROC remaining ≥ 0.93 for all methods. Logistic regression had the numerically highest value in external validation (ROC AUC 0.95). Logistic regression had good performance in terms of calibration and decision curve analysis. Neural network and gradient boosting machine had the best calibration performance. Both logistic regression and support vector machine had good decision curve analysis for clinical useful threshold probabilities. CONCLUSION: Logistic regression performed as well as optimised machine algorithms to classify patients with type 1 and type 2 diabetes. This study highlights the utility of comparing traditional regression modelling to machine learning, particularly when using a small number of well understood, strong predictor variables.

11.
Clin Endocrinol (Oxf) ; 93(3): 269-279, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32395877

RESUMO

OBJECTIVE AND CONTEXT: Maturity onset diabetes of the young due to variants in HNF1A (HNF1A-MODY) is the most common form of monogenic diabetes. Individuals with HNF1A-MODY usually have a lean phenotype which contrasts with type 2 diabetes (T2DM). Data from hepatocytes derived from Hnf1a knock-out mice demonstrated dysregulation of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), which regulates glucocorticoid availability and action in target tissues, together with 11ß-HSD2 and steroid A-ring reductases, 5α- and 5ß-reductase. We proposed that altered glucocorticoid metabolism might underpin some of the phenotypic differences between patients with HNF1A-MODY and those with T2DM. DESIGN: A retrospective matched cohort study. PATIENTS AND MEASUREMENTS: 24-hours urine steroid metabolome profiling was carried out by gas chromatography-mass spectrometry in 35 subjects with HNF1A-MODY, 35 individuals with T2DM and 35 healthy controls matched for age, sex and BMI. The steroid metabolites were expressed as µg/L in all groups and measured in mid-morning urine in diabetic subjects and 24-hour urine collection in healthy controls. Hence, only ratios were compared not the individual steroids. Established ratios of glucocorticoid metabolites were used to estimate 11ß-HSD1/2 and 5α- and 5ß-reductase activities. RESULTS: While 11ß-HSD1 activity was similar in all groups, 11ß-HSD2 activity was significantly lower in subjects with HNF1A-MODY and T2DM than in healthy controls. The ratio of 5ß- to 5α-metabolites of cortisol was higher in subjects with HNF1A-MODY than in T2DM and healthy controls, probably due to increased activity of the 5ß-reductase (AKR1D1) in HNF1A-MODY. CONCLUSIONS: This is the first report of steroid metabolites in HNF1A-MODY. We have identified distinct differences in steroid metabolism pathways in subjects with HNF1A-MODY that have the potential to alter steroid hormone availability. Further studies are required to explore whether these changes link to phenotype.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Estudos de Coortes , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Hidrocortisona , Camundongos , Estudos Retrospectivos
12.
Diabetes Care ; 42(1): 17-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455330

RESUMO

OBJECTIVE: Maturity-onset diabetes of the young (MODY) due to variants in HNF1A is the most common type of monogenic diabetes. Frequent misdiagnosis results in missed opportunity to use sulfonylureas as first-line treatment. A nongenetic biomarker could improve selection of subjects for genetic testing and increase diagnosis rates. We previously reported that plasma levels of antennary fucosylated N-glycans and high-sensitivity C-reactive protein (hs-CRP) are reduced in individuals with HNF1A-MODY. In this study, we examined the potential use of N-glycans and hs-CRP in discriminating individuals with damaging HNF1A alleles from those without HNF1A variants in an unselected population of young adults with nonautoimmune diabetes. RESEARCH DESIGN AND METHODS: We analyzed the plasma N-glycan profile, measured hs-CRP, and sequenced HNF1A in 989 individuals with diabetes diagnosed when younger than age 45, persistent endogenous insulin production, and absence of pancreatic autoimmunity. Systematic assessment of rare HNF1A variants was performed. RESULTS: We identified 29 individuals harboring 25 rare HNF1A alleles, of which 3 were novel, and 12 (in 16 probands) were considered pathogenic. Antennary fucosylated N-glycans and hs-CRP were able to differentiate subjects with damaging HNF1A alleles from those without rare HNF1A alleles. Glycan GP30 had a receiver operating characteristic curve area under the curve (AUC) of 0.90 (88% sensitivity, 80% specificity, cutoff 0.70%), whereas hs-CRP had an AUC of 0.83 (88% sensitivity, 69% specificity, cutoff 0.81 mg/L). CONCLUSIONS: Half of rare HNF1A sequence variants do not cause MODY. N-glycan profile and hs-CRP could both be used as tools, alone or as adjuncts to existing pathways, for identifying individuals at high risk of carrying a damaging HNF1A allele.


Assuntos
Proteína C-Reativa/metabolismo , Diabetes Mellitus Tipo 2/sangue , Fator 1-alfa Nuclear de Hepatócito/sangue , Polissacarídeos/sangue , Adolescente , Adulto , Alelos , Biomarcadores/sangue , Colesterol/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/sangue , Insulina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Análise de Sequência de DNA , Triglicerídeos/sangue , Adulto Jovem
13.
Curr Diab Rep ; 18(12): 141, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377832

RESUMO

PURPOSE OF REVIEW: Monogenic forms of diabetes have specific treatments that differ from the standard care provided for type 1 and type 2 diabetes, making the appropriate diagnosis essential. In this review, we discuss current clinical challenges that remain, including improving case-finding strategies, particularly those that have transethnic applicability, and understanding the interpretation of genetic variants as pathogenic, with clinically meaningful impacts. RECENT FINDINGS: Biomarker approaches to the stratification for genetic testing now appear to be most effective in identifying cases of monogenic diabetes, and use of genetic risk scores may also prove useful. However, applicability in all ethnic groups is lacking. Challenges remain in the classification of genes as diabetes-causing and the interpretation of genetic variants at the clinical interface. Since the discovery that genetic defects can cause neonatal or young-onset diabetes, multiple causal genes have been identified and there have been many advances in strategies to detect genetic forms of diabetes and their treatments. Approaches learnt from monogenic diabetes are now being translated to polygenic diabetes.


Assuntos
Diabetes Mellitus/genética , Predisposição Genética para Doença , Biomarcadores/metabolismo , Etnicidade/genética , Testes Genéticos , Humanos , Mutação/genética
14.
Ther Adv Endocrinol Metab ; 9(9): 271-282, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30181854

RESUMO

BACKGROUND: Young adults with diabetes in Asia represent a heterogeneous group. Using traditional clinical criteria to preselect individuals for testing for maturity-onset diabetes of the young (MODY) may exclude a large proportion from testing. High-sensitivity C-reactive protein (hs-CRP) has shown promise as a biomarker to differentiate hepatic nuclear factor 1 alpha (HNF1A)-MODY from type 2 diabetes. We aimed to compare the use of hs-CRP as a biomarker versus traditional criteria, to guide testing for HNF1A-MODY among a cohort of young adults with diabetes in Singapore. METHODS: A total of 252 adults (age of onset ⩽45 years) and 20 children with diabetes were recruited. Using traditional criteria (family history of diabetes and onset of diabetes ⩽25 years) and an hs-CRP cut off of ⩽0.5 mg/l, 125 and 37 adults, respectively, were identified for HNF1A gene testing. All children underwent HNF1A gene testing. RESULTS: Five adults (5/143, 3.5%) with HNF1A-MODY were identified. There were no HNF1A gene mutations among the children. Traditional criteria correctly identified all five HNF1A-MODY individuals (5/125, 4%), while applying an hs-CRP level of ⩽0.5 mg/l selected just 1 of these 5 for HNF1A gene testing (1/37, 2.7%). None of those with a positive GAD antibody or undetectable C-peptide level had HNF1A-MODY. CONCLUSION: The use of hs-CRP to guide screening for HNF1A-MODY among Asian young adults with diabetes did not improve the diagnostic yield. Applying a combination of age of onset of diabetes under 25 years and a family history of diabetes alone could guide targeted HNF1A-MODY screening in Asians, with an expected yield of 4% diagnosed with HNF1A-MODY among those screened.

15.
Curr Opin Genet Dev ; 50: 103-110, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734081

RESUMO

Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic causes of beta-cell dysfunction and diabetes arising in children and young adults. Making an accurate diagnosis of MODY is important for establishing the correct management. Recent advances in our understanding of human sequence variation, through data collated in resources such as the Exome Aggregation Consortium have refined guidelines for assessment of rare genetic variants. This will allow a more precise aetiological diagnosis in childhood and young adult diabetes. No major new monogenic causes of diabetes outside the neonatal period have been identified in recent years, but the allelic spectrum of disease phenotype associated with known genes continues to expand. Improving uptake of genetic testing by defining who should be tested is an area of active research. A population based study found that 6.5% of children who have negative beta-cell antibodies at diagnosis have rare functional variants in MODY genes. Defining the high risk groups in adults with diabetes is more difficult, but online decision aids will assist clinicians in selecting who to refer for testing.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Testes Genéticos , Adolescente , Criança , Pré-Escolar , Diabetes Mellitus Tipo 2/patologia , Exoma/genética , Humanos , Células Secretoras de Insulina/patologia , Mutação , Fenótipo , Adulto Jovem
16.
Biochem Med (Zagreb) ; 28(2): 020703, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29666556

RESUMO

INTRODUCTION: Maturity onset diabetes of the young due to HNF1A mutations (HNF1A-MODY) is the most frequent form of monogenic diabetes in adults. It is often misdiagnosed as type 1 or type 2 diabetes, but establishing genetic diagnosis is important, as treatment differs from the common types of diabetes. HNF1A-MODY has not been investigated in Croatia before due to limited access to genetic testing. In this study we aimed to describe the characteristics of young adults diagnosed with diabetes before the age of 45 years, who have rare HNF1A allele variants, and estimate the prevalence of HNF1A-MODY in Croatia. MATERIALS AND METHODS: We recruited 477 C-peptide positive and beta cell antibody negative subjects through the Croatian Diabetes Registry. HNF1A was sequenced for all participants and systematic assessment of the variants found was performed. The prevalence of HNF1A-MODY was calculated in the study group and results extrapolated to estimate the proportion of diabetic individuals with HNF1A-MODY in Croatia and the population prevalence. RESULTS: Our study identified 13 individuals harbouring rare HNF1A allelic variants. After systematic assessment, 8 were assigned a diagnosis of HNF1A-MODY. Two individuals were able to discontinue insulin treatment following the diagnosis. We estimated that HNF1A-MODY in Croatia has a prevalence of 66 (95% CI 61 - 72) cases per million. CONCLUSIONS: The estimated prevalence of HNF1A-MODY in Croatia is similar to that reported in other European countries. Finding cases lead to important treatment changes for patients. This strongly supports the introduction of diagnostic genetic testing for monogenic diabetes in Croatia.


Assuntos
Peptídeo C/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Fator 1-alfa Nuclear de Hepatócito/genética , Mutação , Sistema de Registros , Adolescente , Adulto , Idoso , Alelos , Autoanticorpos/sangue , Biomarcadores/sangue , Croácia/epidemiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Feminino , Expressão Gênica , Frequência do Gene , Testes Genéticos , Fator 1-alfa Nuclear de Hepatócito/imunologia , Humanos , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Masculino , Pessoa de Meia-Idade , Prevalência , Análise de Sequência de DNA
17.
Best Pract Res Clin Endocrinol Metab ; 30(3): 455-67, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27432078

RESUMO

It is increasingly recognised that diabetes in young adults has a wide differential diagnosis. There are many monogenic causes, including monogenic beta-cell dysfunction, mitochondrial diabetes and severe insulin resistance. Type 2 diabetes in the young is becoming more prevalent, particularly after adolescence. It's important to understand the clinical features and diagnostic tools available to classify the different forms of young adult diabetes. Classic type 1 diabetes is characterised by positive ß-cell antibodies and absence of endogenous insulin secretion. Young type 2 diabetes is accompanied by metabolic syndrome with obesity, hypertension and dyslipidaemia. Monogenic ß-cell dysfunction is characterised by non-autoimmune, C-peptide positive diabetes with a strong family history, while mitochondrial diabetes features deafness and other neurological involvement. Severe insulin resistance involves a young-onset metabolic syndrome often with a disproportionately low BMI. A suspected diagnosis of monogenic diabetes is confirmed with genetic testing, which is widely available in specialist centres across the world. Treatment of young adult diabetes is similarly diverse. Mutations in the transcription factors HNF1A and HNF4A and in the ß-cell potassium ATP channel components cause diabetes which responds to low dose and high dose sulfonylurea agents, respectively, while glucokinase mutations require no treatment. Monogenic insulin resistance and young-onset type 2 diabetes are both challenging to treat, but first line management involves insulin sensitisers and aggressive management of cardiovascular risk. Outcomes are poor in young-onset type 2 diabetes compared to both older onset type 2 and type 1 diabetes diagnosed at a similar age. The evidence base for treatments in monogenic and young-onset type 2 diabetes relies on studies of moderate quality at best and largely on extrapolation from work conducted in older type 2 diabetes subjects. Better quality, larger studies, particularly of newer agents would improve treatment prospects for young adults with diabetes.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Hipoglicemiantes/uso terapêutico , Mutação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Humanos , Canais KATP/genética , Medicina de Precisão
19.
J Mol Med (Berl) ; 93(10): 1159-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26013143

RESUMO

UNLABELLED: MicroRNAs play a crucial role in the regulation of cell growth and differentiation. Mice with genetic deletion of miR-375 exhibit impaired glycemic control due to decreased ß-cell and increased α-cell mass and function. The relative importance of these processes for the overall phenotype of miR-375KO mice is unknown. Here, we show that mice overexpressing miR-375 exhibit normal ß-cell mass and function. Selective re-expression of miR-375 in ß-cells of miR-375KO mice normalizes both, α- and ß-cell phenotypes as well as glucose metabolism. Using this model, we also analyzed the contribution of ß-cells to the total plasma miR-375 levels. Only a small proportion (≈1 %) of circulating miR-375 originates from ß-cells. Furthermore, acute and profound ß-cell destruction is sufficient to detect elevations of miR-375 levels in the blood. These findings are supported by higher miR-375 levels in the circulation of type 1 diabetes (T1D) subjects but not mature onset diabetes of the young (MODY) and type 2 diabetes (T2D) patients. Together, our data support an essential role for miR-375 in the maintenance of ß-cell mass and provide in vivo evidence for release of miRNAs from pancreatic ß-cells. The small contribution of ß-cells to total plasma miR-375 levels make this miRNA an unlikely biomarker for ß-cell function but suggests a utility for the detection of acute ß-cell death for autoimmune diabetes. KEY MESSAGES: • Overexpression of miR-375 in ß-cells does not influence ß-cell mass and function. • Increased α-cell mass in miR-375KO arises secondarily to loss of miR-375 in ß-cells. • Only a small proportion of circulating miR-375 levels originates from ß-cells. • Acute ß-cell destruction results in measurable increases of miR-375 in the blood. Circulating miR-375 levels are not a biomarker for pancreatic ß-cell function.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Células Secretoras de Insulina/metabolismo , MicroRNAs/sangue , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Glicemia/análise , Feminino , Dosagem de Genes , Humanos , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
20.
Curr Diabetes Rev ; 10(5): 298-301, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25311195

RESUMO

Treatment compliance and adherence are often a challenge in patients with type 1 diabetes, particularly for adolescent and young adult patients. With the availability of the internet and smart phone applications (apps) there is a hope that such technology could provide a means to encourage treatment adherence in this group of patients. This review focuses on whether telemedicine and smartphone technology in diabetes can influence self-management in young people with diabetes. A large number of smartphone apps are targeted at people with diabetes, but a limited number of well designed evaluation studies have been performed. As our review shows, the evidence base for efficacy of most of these applications is minimal and improvement in hard outcomes such as HbA1c and complication development is largely lacking.


Assuntos
Automonitorização da Glicemia/psicologia , Diabetes Mellitus Tipo 1/psicologia , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/administração & dosagem , Adesão à Medicação/psicologia , Autocuidado , Telemedicina , Adolescente , Comportamento do Adolescente , Automonitorização da Glicemia/estatística & dados numéricos , Telefone Celular , Criança , Comportamento Infantil , Computadores de Mão , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/terapia , Comportamentos Relacionados com a Saúde , Promoção da Saúde , Humanos , Adesão à Medicação/estatística & dados numéricos , Aplicativos Móveis , Educação de Pacientes como Assunto , Satisfação do Paciente , Sistemas de Alerta , Autocuidado/instrumentação , Autocuidado/métodos , Envio de Mensagens de Texto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...