Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS One ; 19(5): e0303263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748719

RESUMO

Environmental DNA (eDNA) is an increasingly useful method for detecting pelagic animals in the ocean but typically requires large water volumes to sample diverse assemblages. Ship-based pelagic sampling programs that could implement eDNA methods generally have restrictive water budgets. Studies that quantify how eDNA methods perform on low water volumes in the ocean are limited, especially in deep-sea habitats with low animal biomass and poorly described species assemblages. Using 12S rRNA and COI gene primers, we quantified assemblages comprised of micronekton, coastal forage fishes, and zooplankton from low volume eDNA seawater samples (n = 436, 380-1800 mL) collected at depths of 0-2200 m in the southern California Current. We compared diversity in eDNA samples to concurrently collected pelagic trawl samples (n = 27), detecting a higher diversity of vertebrate and invertebrate groups in the eDNA samples. Differences in assemblage composition could be explained by variability in size-selectivity among methods and DNA primer suitability across taxonomic groups. The number of reads and amplicon sequences variants (ASVs) did not vary substantially among shallow (<200 m) and deep samples (>600 m), but the proportion of invertebrate ASVs that could be assigned a species-level identification decreased with sampling depth. Using hierarchical clustering, we resolved horizontal and vertical variability in marine animal assemblages from samples characterized by a relatively low diversity of ecologically important species. Low volume eDNA samples will quantify greater taxonomic diversity as reference libraries, especially for deep-dwelling invertebrate species, continue to expand.


Assuntos
Organismos Aquáticos , Biodiversidade , DNA Ambiental , Animais , DNA Ambiental/genética , DNA Ambiental/análise , Organismos Aquáticos/genética , Organismos Aquáticos/classificação , Água do Mar , Peixes/genética , Peixes/classificação , Zooplâncton/genética , Zooplâncton/classificação , Ecossistema , Invertebrados/genética , Invertebrados/classificação
2.
Water Res ; 252: 121178, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309063

RESUMO

As COVID-19 becomes endemic, public health departments benefit from improved passive indicators, which are independent of voluntary testing data, to estimate the prevalence of COVID-19 in local communities. Quantification of SARS-CoV-2 RNA from wastewater has the potential to be a powerful passive indicator. However, connecting measured SARS-CoV-2 RNA to community prevalence is challenging due to the high noise typical of environmental samples. We have developed a generalized pipeline using in- and out-of-sample model selection to test the ability of different correction models to reduce the variance in wastewater measurements and applied it to data collected from treatment plants in the Chicago area. We built and compared a set of multi-linear regression models, which incorporate pepper mild mottle virus (PMMoV) as a population biomarker, Bovine coronavirus (BCoV) as a recovery control, and wastewater system flow rate into a corrected estimate for SARS-CoV-2 RNA concentration. For our data, models with BCoV performed better than those with PMMoV, but the pipeline should be used to reevaluate any new data set as the sources of variance may change across locations, lab methods, and disease states. Using our best-fit model, we investigated the utility of RNA measurements in wastewater as a leading indicator of COVID-19 trends. We did this in a rolling manner for corrected wastewater data and for other prevalence indicators and statistically compared the temporal relationship between new increases in the wastewater data and those in other prevalence indicators. We found that wastewater trends often lead other COVID-19 indicators in predicting new surges.


Assuntos
COVID-19 , Saúde Pública , SARS-CoV-2 , Tobamovirus , Animais , Bovinos , COVID-19/epidemiologia , RNA Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
3.
Sci Total Environ ; 876: 162572, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36871720

RESUMO

Wastewater SARS-CoV-2 surveillance has been deployed since the beginning of the COVID-19 pandemic to monitor the dynamics in virus burden in local communities. Genomic surveillance of SARS-CoV-2 in wastewater, particularly efforts aimed at whole genome sequencing for variant tracking and identification, are still challenging due to low target concentration, complex microbial and chemical background, and lack of robust nucleic acid recovery experimental procedures. The intrinsic sample limitations are inherent to wastewater and are thus unavoidable. Here, we use a statistical approach that couples correlation analyses to a random forest-based machine learning algorithm to evaluate potentially important factors associated with wastewater SARS-CoV-2 whole genome amplicon sequencing outcomes, with a specific focus on the breadth of genome coverage. We collected 182 composite and grab wastewater samples from the Chicago area between November 2020 to October 2021. Samples were processed using a mixture of processing methods reflecting different homogenization intensities (HA + Zymo beads, HA + glass beads, and Nanotrap), and were sequenced using one of the two library preparation kits (the Illumina COVIDseq kit and the QIAseq DIRECT kit). Technical factors evaluated using statistical and machine learning approaches include sample types, certain sample intrinsic features, and processing and sequencing methods. The results suggested that sample processing methods could be a predominant factor affecting sequencing outcomes, and library preparation kits was considered a minor factor. A synthetic SARS-CoV-2 RNA spike-in experiment was performed to validate the impact from processing methods and suggested that the intensity of the processing methods could lead to different RNA fragmentation patterns, which could also explain the observed inconsistency between qPCR quantification and sequencing outcomes. Overall, extra attention should be paid to wastewater sample processing (i.e., concentration and homogenization) for sufficient and good quality SARS-CoV-2 RNA for downstream sequencing.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , RNA Viral , Águas Residuárias , Manejo de Espécimes
4.
PLoS One ; 16(8): e0237556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34460815

RESUMO

Cervical microbiota (CM) are considered an important factor affecting the progression of cervical intraepithelial neoplasia (CIN) and are implicated in the persistence of human papillomavirus (HPV). Collection of liquid-based cytology (LBC) samples is routine for cervical cancer screening and HPV genotyping and can be used for long-term cytological biobanking. We sought to determine whether it is possible to access microbial DNA from LBC specimens, and compared the performance of four different extraction protocols: (ZymoBIOMICS DNA Miniprep Kit; QIAamp PowerFecal Pro DNA Kit; QIAamp DNA Mini Kit; and IndiSpin Pathogen Kit) and their ability to capture the diversity of CM from LBC specimens. LBC specimens from 20 patients (stored for 716 ± 105 days) with CIN values of 2 or 3 were each aliquoted for each of the four kits. Loss of microbial diversity due to long-term LBC storage could not be assessed due to lack of fresh LBC samples. Comparisons with other types of cervical sampling were not performed. We observed that all DNA extraction kits provided equivalent accessibility to the cervical microbial DNA within stored LBC samples. Approximately 80% microbial genera were shared among all DNA extraction protocols. Potential kit contaminants were observed as well. Variation between individuals was a significantly greater influence on the observed microbial composition than was the method of DNA extraction. We also observed that HPV16 was significantly associated with community types that were not dominated by Lactobacillus iners.


Assuntos
Colo do Útero/microbiologia , Colo do Útero/virologia , DNA/genética , Microbiota/genética , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Adulto , Bancos de Espécimes Biológicos , Citodiagnóstico/métodos , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Lactobacillus/genética , Neoplasias do Colo do Útero/microbiologia , Neoplasias do Colo do Útero/virologia
5.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575762

RESUMO

While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Microbiologia do Solo , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Metagenômica
6.
Nat Commun ; 9(1): 5353, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559359

RESUMO

Advances in high-throughput sequencing have facilitated remarkable insights into the diversity and functioning of naturally occurring microbes; however, current sequencing strategies are insufficient to reveal physiological states of microbial communities associated with protein translation dynamics. Transfer RNAs (tRNAs) are core components of protein synthesis machinery, present in all living cells, and are phylogenetically tractable, which make them ideal targets to gain physiological insights into environmental microbes. Here we report a direct sequencing approach, tRNA-seq, and a software suite, tRNA-seq-tools, to recover sequences, abundance profiles, and post-transcriptional modifications of microbial tRNA transcripts. Our analysis of cecal samples using tRNA-seq distinguishes high-fat- and low-fat-fed mice in a comparable fashion to 16S ribosomal RNA gene amplicons, and reveals taxon- and diet-dependent variations in tRNA modifications. Our results provide taxon-specific in situ insights into the dynamics of tRNA gene expression and post-transcriptional modifications within complex environmental microbiomes.


Assuntos
Ceco/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética , RNA de Transferência/genética , Análise de Sequência de RNA/métodos , Animais , Bacillus subtilis/genética , Bacteroidetes/genética , Escherichia coli/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus/genética
7.
PLoS One ; 13(11): e0206701, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383855

RESUMO

Intestinal mucus layer disruption and gut microflora modification in conjunction with tight junction (TJ) changes can increase colonic permeability that allows bacterial dissemination and intestinal and systemic disease. We showed previously that Citrobacter rodentium (CR)-induced colonic crypt hyperplasia and/or colitis is regulated by a functional cross-talk between the Notch and Wnt/ß-catenin pathways. In the current study, mucus analysis in the colons of CR-infected (108 CFUs) and Notch blocker Dibenzazepine (DBZ, i.p.; 10µmol/Kg b.w.)-treated mice revealed significant alterations in the composition of trace O-glycans and complex type and hybrid N-glycans, compared to CR-infected mice alone that preceded/accompanied alterations in 16S rDNA microbial community structure and elevated EUB338 staining. While mucin-degrading bacterium, Akkermansia muciniphila (A. muciniphila) along with Enterobacteriaceae belonging to Proteobacteria phyla increased in the feces, antimicrobial peptides Angiogenin-4, Intelectin-1 and Intelectin-2, and ISC marker Dclk1, exhibited dramatic decreases in the colons of CR-infected/DBZ-treated mice. Also evident was a loss of TJ and adherens junction protein immuno-staining within the colonic crypts that negatively impacted paracellular barrier. These changes coincided with the loss of Notch signaling and exacerbation of mucosal injury. In response to a cocktail of antibiotics (Metronidazole/ciprofloxacin) for 10 days, there was increased survival that coincided with: i) decreased levels of Proteobacteria, ii) elevated Dclk1 levels in the crypt and, iii) reduced paracellular permeability. Thus, enteric infections that interfere with Notch activity may promote mucosal dysbiosis that is preceded by changes in mucus composition. Controlled use of antibiotics seems to alleviate gut dysbiosis but may be insufficient to promote colonic crypt regeneration.


Assuntos
Citrobacter rodentium , Colo/imunologia , Infecções por Enterobacteriaceae/imunologia , Muco/imunologia , Receptores Notch/antagonistas & inibidores , Animais , Animais não Endogâmicos , Colite/tratamento farmacológico , Colite/imunologia , Colite/patologia , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Dibenzazepinas/farmacologia , Modelos Animais de Doenças , Disbiose/tratamento farmacológico , Disbiose/imunologia , Disbiose/patologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/patologia , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muco/microbiologia , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/imunologia , Junções Íntimas/patologia
8.
Front Microbiol ; 8: 2321, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234312

RESUMO

Microbial communities that inhabit environments such as soil can contain thousands of distinct taxa, yet little is known about how this diversity is maintained in response to environmental perturbations such as changes in the availability of carbon. By utilizing aerobic substrate arrays to examine the effect of carbon amendment on microbial communities taken from six distinct environments (soil from a temperate prairie and forest, tropical forest soil, subalpine forest soil, and surface water and soil from a palustrine emergent wetland), we examined how carbon amendment and inoculum source shape the composition of the community in each enrichment. Dilute subsamples from each environment were used to inoculate 96-well microtiter plates containing triplicate wells amended with one of 31 carbon sources from six different classes of organic compounds (phenols, polymers, carbohydrates, carboxylic acids, amines, amino acids). After incubating each well aerobically in the dark for 72 h, we analyzed the composition of the microbial communities on the substrate arrays as well as the initial inocula by sequencing 16S rRNA gene amplicons using the Illumina MiSeq platform. Comparisons of alpha and beta diversity in these systems showed that, while the composition of the communities that grow to inhabit the wells in each substrate array diverges sharply from that of the original community in the inoculum, these enrichment communities are still strongly affected by the inoculum source. We found most enrichments were dominated by one or several OTUs most closely related to aerobes or facultative anaerobes from the Proteobacteria (e.g., Pseudomonas, Burkholderia, and Ralstonia) or Bacteroidetes (e.g., Chryseobacterium). Comparisons within each substrate array based on the class of carbon source further show that the communities inhabiting wells amended with a carbohydrate differ significantly from those enriched with a phenolic compound. Selection therefore seems to play a role in shaping the communities in the substrate arrays, although some stochasticity is also seen whereby several replicate wells within a single substrate array display strongly divergent community compositions. Overall, the use of highly parallel substrate arrays offers a promising path forward to study the response of microbial communities to perturbations in a changing environment.

9.
Nature ; 551(7681): 457-463, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29088705

RESUMO

Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.


Assuntos
Biodiversidade , Planeta Terra , Microbiota/genética , Animais , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Ecologia/métodos , Dosagem de Genes , Mapeamento Geográfico , Humanos , Plantas/microbiologia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
10.
Environ Sci Technol ; 51(11): 6430-6440, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28492313

RESUMO

Particulate matter emissions from agricultural livestock operations contain both chemical and biological constituents that represent a potential human health hazard. The size and composition of these dusts, however, have not been well described. We evaluated the full size distribution (from 0 to 100 µm in aerodynamic diameter) and chemical/biological composition of inhalable dusts inside several Colorado dairy parlors. Four aerodynamic size fractions (<3, 3-10, 10-30, and >30 µm) were collected and analyzed using a combination of physiochemical techniques to understand the structure of bacterial communities and chemical constituents. Airborne particulate mass followed a bimodal size distribution (one mode at 3 µm and a second above 30 µm), which also correlated with the relative concentrations of the following microbiological markers: bacterial endotoxin, 3-hydroxy fatty acids, and muramic acid. Sequencing of the 16S-rRNA components of this aerosol revealed a microbiome derived predominantly from animal sources. Bacterial genera included Staphlyococcus, Pseudomonas, and Streptococcus, all of which have proinflammatory and pathogenic capacity. Our results suggest that the size distribution of bioaerosols emitted by dairy operations extends well above 10 µm in diameter and contains a diverse mixture of potentially hazardous constituents and opportunistic pathogens. These findings should inform the development of more effective emissions control strategies.


Assuntos
Aerossóis , Indústria de Laticínios , Poeira , Endotoxinas/análise , Material Particulado , Poluentes Atmosféricos , Animais , Bactérias , Colorado , Monitoramento Ambiental , Humanos , Tamanho da Partícula
11.
Mol Ecol Resour ; 17(5): 931-942, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27997751

RESUMO

Plants in terrestrial and aquatic environments contain a diverse microbiome. Yet, the chloroplast and mitochondria organelles of the plant eukaryotic cell originate from free-living cyanobacteria and Rickettsiales. This represents a challenge for sequencing the plant microbiome with universal primers, as ~99% of 16S rRNA sequences may consist of chloroplast and mitochondrial sequences. Peptide nucleic acid clamps offer a potential solution by blocking amplification of host-associated sequences. We assessed the efficacy of chloroplast and mitochondria-blocking clamps against a range of microbial taxa from soil, freshwater and marine environments. While we found that the mitochondrial blocking clamps appear to be a robust method for assessing animal-associated microbiota, Proteobacterial 16S rRNA binds to the chloroplast-blocking clamp, resulting in a strong sequencing bias against this group. We attribute this bias to a conserved 14-bp sequence in the Proteobacteria that matches the 17-bp chloroplast-blocking clamp sequence. By scanning the Greengenes database, we provide a reference list of nearly 1500 taxa that contain this 14-bp sequence, including 48 families such as the Rhodobacteraceae, Phyllobacteriaceae, Rhizobiaceae, Kiloniellaceae and Caulobacteraceae. To determine where these taxa are found in nature, we mapped this taxa reference list against the Earth Microbiome Project database. These taxa are abundant in a variety of environments, particularly aquatic and semiaquatic freshwater and marine habitats. To facilitate informed decisions on effective use of organelle-blocking clamps, we provide a searchable database of microbial taxa in the Greengenes and Silva databases matching various n-mer oligonucleotides of each PNA sequence.


Assuntos
Bactérias/classificação , Bactérias/genética , Metagenômica/métodos , Microbiota , Plantas/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Environ Microbiol ; 18(6): 2039-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26914164

RESUMO

Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystem scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% of bacterial taxa were shared between their site and diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.


Assuntos
Bactérias/classificação , Biodiversidade , Pradaria , Microbiologia do Solo , Bactérias/isolamento & purificação , Panicum
13.
ISME J ; 10(5): 1217-27, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26473721

RESUMO

To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showed significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. The contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health.


Assuntos
Dieta , Gastroenteropatias/microbiologia , Gastroenteropatias/virologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Mapeamento de Sequências Contíguas , Gorduras na Dieta , Fibras na Dieta , Sacarose Alimentar , Feminino , Intestinos/microbiologia , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , RNA Ribossômico 16S/genética , Vírus/classificação
14.
Microbiome ; 3: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113975

RESUMO

BACKGROUND: Americans spend the vast majority of their lives in built environments. Even traditionally outdoor pursuits, such as exercising, are often now performed indoors. Bacteria that colonize these indoor ecosystems are primarily derived from the human microbiome. The modes of human interaction with indoor surfaces and the physical conditions associated with each surface type determine the steady-state ecology of the microbial community. RESULTS: Bacterial assemblages associated with different surfaces in three athletic facilities, including floors, mats, benches, free weights, and elliptical handles, were sampled every other hour (8 am to 6 pm) for 2 days. Surface and equipment type had a stronger influence on bacterial community composition than the facility in which they were housed. Surfaces that were primarily in contact with human skin exhibited highly dynamic bacterial community composition and non-random co-occurrence patterns, suggesting that different host microbiomes-shaped by selective forces-were being deposited on these surfaces through time. However, bacterial assemblages found on the floors and mats changed less over time, and species co-occurrence patterns appeared random, suggesting more neutral community assembly. CONCLUSIONS: These longitudinal patterns highlight the dramatic turnover of microbial communities on surfaces in regular contact with human skin. By uncovering these longitudinal patterns, this study promotes a better understanding of microbe-human interactions within the built environment.

15.
mBio ; 6(2)2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25805735

RESUMO

UNLABELLED: Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management. IMPORTANCE: Vine-associated bacterial communities may play specific roles in the productivity and disease resistance of their host plant. Also, the bacterial communities on grapes have the potential to influence the organoleptic properties of the wine, contributing to a regional terroir. Understanding that factors that influence these bacteria may provide insights into management practices to shape and craft individual wine properties. We show that soil serves as a key source of vine-associated bacteria and that edaphic factors and vineyard-specific properties can influence the native grapevine microbiome preharvest.


Assuntos
Bactérias/classificação , Biota , Microbiologia do Solo , Vitis/microbiologia , Bactérias/genética , Carbono/análise , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Nitrogênio/análise , Filogenia , RNA Ribossômico 16S/genética , Seleção Genética , Análise de Sequência de DNA , Solo/química , Análise Espaço-Temporal
16.
Microbiologyopen ; 3(6): 910-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25257543

RESUMO

The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illumina 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.


Assuntos
Formigas/microbiologia , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , RNA Ribossômico 16S/genética , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , RNA Ribossômico 16S/isolamento & purificação
17.
Science ; 345(6200): 1048-52, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25170151

RESUMO

The bacteria that colonize humans and our built environments have the potential to influence our health. Microbial communities associated with seven families and their homes over 6 weeks were assessed, including three families that moved their home. Microbial communities differed substantially among homes, and the home microbiome was largely sourced from humans. The microbiota in each home were identifiable by family. Network analysis identified humans as the primary bacterial vector, and a Bayesian method significantly matched individuals to their dwellings. Draft genomes of potential human pathogens observed on a kitchen counter could be matched to the hands of occupants. After a house move, the microbial community in the new house rapidly converged on the microbial community of the occupants' former house, suggesting rapid colonization by the family's microbiota.


Assuntos
Bactérias/classificação , Família , Interações Hospedeiro-Patógeno , Utensílios Domésticos , Microbiota/fisiologia , Animais , Bactérias/genética , Bactérias/patogenicidade , Leitos/microbiologia , Pisos e Cobertura de Pisos , Pé/microbiologia , Mãos/microbiologia , Humanos , Metagenoma , Microbiota/genética , Nariz/microbiologia , Animais de Estimação/microbiologia , Propriedades de Superfície
18.
PLoS One ; 9(6): e99641, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24932479

RESUMO

Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. The influence of soil type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.


Assuntos
Cannabis/microbiologia , Microbiota , Microbiologia do Solo , Solo/química , Bactérias/crescimento & desenvolvimento , Canabinoides/metabolismo , Cannabis/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Análise de Componente Principal , Rizosfera
19.
Ann Bot ; 114(1): 125-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24817095

RESUMO

BACKGROUND AND AIMS: Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant-microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. METHODS: 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2. Next-generation sequencing provided information on the expression of N2 fixation-associated genes. N2 fixation rates were measured following (15)N2-labelling and were used to calculate the plant assimilation rate of microbially fixed N2. KEY RESULTS: Utricularia traps were confirmed as primary sites of N2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1·3 µmol N g(-1) d. mass d(-1). Plant assimilation rates of fixed N2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N2 fixation, levels of nif gene transcription comprised <0·01 % of the total prokaryotic transcripts. CONCLUSIONS: It is hypothesized that the reason for limited N2 fixation in aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2·0-4·3 mg L(-1)) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant-microbe system can supply nitrogen in the order of hundreds of mg m(-2) into the nutrient-limited littoral zone, where it may thus represent an important N source.


Assuntos
Bactérias/isolamento & purificação , Droseraceae/metabolismo , Magnoliopsida/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Compostos de Amônio/análise , Bactérias/genética , Bactérias/metabolismo , Sequência de Bases , Droseraceae/microbiologia , Ecologia , Ecossistema , Magnoliopsida/microbiologia , Dados de Sequência Molecular , Isótopos de Nitrogênio , Brotos de Planta/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Água/metabolismo
20.
PLoS One ; 9(1): e85611, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465618

RESUMO

BACKGROUND: Recent evidence suggests that a lower extent of the retronasal aroma release correspond to a higher amount of ad libitum food intake. This has been regarded as one of the bases of behavioral choices towards food consumption in obese people. In this pilot study we investigated the hypothesis that saliva from obese individuals could be responsible for an alteration of the retro-nasal aroma release. We tested this hypothesis in vitro, by comparing the release of volatiles from a liquid food matrix (wine) after its interaction with saliva from 28 obese (O) and 28 normal-weight (N) individuals. METHODS AND FINDINGS: Amplicon sequencing of the 16S rRNA V4 region indicated that Firmicutes and Actinobacteria were more abundant in O, while Proteobacteria and Fusobacteria dominated in N. Streptococcaceae were significantly more abundant in the O subjects and constituted 34% and 19% on average of the saliva microbiota of O and N subjects, respectively. The Total Antioxidant Capacity was higher in O vs N saliva samples. A model mouth system was used to test whether the in-mouth wine aroma release differs after the interaction with O or N saliva. In O samples, a 18% to 60% significant decrease in the mean concentration of wine volatiles was detected as a result of interaction with saliva, compared with N. This suppression was linked to biochemical differences in O and N saliva composition, which include protein content. CONCLUSION: Microbiological and biochemical differences were found in O vs N saliva samples. An impaired retronasal aroma release from white wine was detected in vitro and linked to compositional differences between saliva from obese and normal-weight subjects. Additional in vivo investigations on diverse food matrices could contribute to understanding whether a lower olfactory stimulation due to saliva composition can be a co-factor in the development/maintenance of obesity.


Assuntos
Obesidade/fisiopatologia , Odorantes/análise , Saliva/microbiologia , Olfato/fisiologia , Vinho/análise , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Adulto , Idoso , Antioxidantes/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Índice de Massa Corporal , Análise Discriminante , Fusobactérias/genética , Fusobactérias/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Análise dos Mínimos Quadrados , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteoma/análise , Proteômica/métodos , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...