Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829851

RESUMO

Non-toxic alternatives to chemical soil fumigants for suppressing soilborne pathogens such as Fusarium oxysporum (Fo), one causative agent of strawberry black root rot complex prevalent in the southeastern U.S., are urgently needed. A promising alternative is anaerobic soil disinfestation (ASD), in which soil is amended with labile organic materials, irrigated to field capacity, and tarped to induce anaerobic fermentation for a brief period before planting. Pathogen-suppression mechanisms of ASD include anaerobic conditions and generation of reduced metal cations (Fe2+ and Mn2+) and volatile fatty acids (VFAs; e.g., acetic, n-butyric, isovaleric, and others). However, little is known about how the interaction between VFAs, reduced metals, soil texture, and liming influences suppression of Fo. We investigated Fo suppression by VFAs and reduced metal cations in both aqueous and soil-based incubation trials. Inoculum containing Fo chlamydospores was added to aqueous medium containing either 5 or 10 mmol/liter VFAs and either 0.01% or 0.05% (w/w) reduced metals. In soil-based incubations, chlamydospore-containing inoculum was applied to sandy, sandy loam, and silty clay soil saturated by solutions containing 10 or 20 mmol/liter VFAs with or without 0.05% (w/w) reduced metals. VFAs, particularly in combination with Fe2+ in aqueous solutions and Mn2+ in soils significantly reduced Fo viability. At the same time, liming and higher soil clay content reduced the effectiveness of VFAs and reduced metals for suppressing Fo, highlighting the influence of soil pH and soil texture on ASD effectiveness.

2.
Plant Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720536

RESUMO

Strawberry (Fragaria × ananassa Duch) in Tennessee is cultivated on plastic mulched beds annually, and production is limited primarily by multiple oomycete and fungal root rot pathogens that result in reduced vigor and black root rot disease symptoms. In early June 2018, plants (cv. Chandler) with reduced shoot vigor and size, and black, necrotic stunted roots were collected from Rhea County, TN. Roots and crowns of 10 plants were cut into 1-3 cm pieces and surface sterilized with 0.6% NaOCl, followed by 70% ethanol for 1 min each, and plated on water agar. White mycelia produced after 3 days were transferred to potato dextrose agar amended with 10 mg/liter rifampicin. After 10 days, fungal colonies were light purple on the surface and dark purple on the colony underside, later developing blue-black pigmentation on the underside. Microconidia on carnation leaf agar were ovoid to ellipsoid, aseptate or septate and 8.0 to 24.2 (13.7) × 3.0 to 4.5 (3.8) µm in size, macroconidia were 3 to 5 septate and falcate to almost straight and 33.7 to 52.8 (44.4) × 4.0 to 5.5 (4.9) µm in size (n=80); both conidia were produced on monophialides. Chlamydospores were globose and subglobose, formed terminally and intercalary on aerial, submerged, and surface mycelium, singly or in pairs and were abundantly produced in sucrose broth and on synthetic nutrient-poor agar (SNA) (diam. 7.6 µm). Morphology was consistent with Fusarium oxysporum (Leslie and Summerell, 2006) and F. cugenangense, a member of the F. oxysporum species complex, as described by Maryani et al. (2019). Fungal mycelia were used for PCR (Phire Plant Direct PCR Master Mix, Thermo Scientific, CA) and the translational elongation factor 1-α (EF1α) region was amplified with primers EF-1/EF-2 (O'Donnell et al., 1998), internal transcribed spacer (ITS) regions amplified with primers ITS1/ITS2 (White et al. 1990), and the RNA polymerase second largest subunit region (RPB2) with primer pairs 5f2/7cr and 7cf/11ar (O'Donnell et al., 2022). PCR products of isolate SC5 were sequenced, and sequences compared to all sequences in the FUSARIOID-ID database using polyphasic identification (Crous et al., 2021) with EF1α (GenBank Accession No. ON703236) and RPB2 (OR472390) sequences. The highest similarity (100%) was with isolates of F. cugenangense, including ex-type isolate InaCC F984 (99.94% similarity) (Maryani et al., 2019). F. cugenangense is closely related to F. callistephi and F. elaeidis, but both species lack chlamydospores, and F. elaeidis has polyphialides (Lombard et al, 2019). To satisfy Koch's postulates, healthy rooted strawberry plants produced in soilless media were transplanted into 4 plastic pots (1.2-liter) containing 5% (w/v) fungal inoculum (grown on barley grain) and mixed into the top 5-cm of peat-based soilless medium. Pots were incubated at 25°C and 50% RH in a growth chamber. Four pots without inoculum served as controls. The trial was repeated. Within 8 weeks, all inoculated plants had low vigor, with necrotic and stunted roots. Root sections of control and inoculated plants were plated, and the pathogen was re-isolated from diseased roots of all inoculated plants only and confirmed as F. cugenangense based on morphology and sequence analysis. To our knowledge, this is the first report of F. cugenangense, or any member of the F. oxysporum species complex, causing root rot of strawberry in Tennessee and could be an important component of the production-limiting black root rot disease complex of strawberry.

3.
ACS Appl Bio Mater ; 6(6): 2248-2256, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37205783

RESUMO

The objective of this study was to synthesize and evaluate the efficacy of antimicrobial waxes to be used as both physical and biological protection to perishable fruits and vegetables. The existing wax materials used in postharvest coating applications do not provide this antimicrobial functionality. One class of such waxes was obtained by covalently linking quaternary ammonium compounds (QACs) featuring alkyl, benzyl, and stearyl ester hydrophobic side groups to the terminal position of a bromo stearyl ester. A second class was obtained by linking these QACs to the pendant hydroxyl group of an aliphatic diamide made of 12-hydroxystearic acid, stearic acid, and ethylene diamine. In total, six distinct structures having three different QAC groups were synthesized. Compounds containing QACs with C8 alkyl groups exhibited potent inhibition toward the growth of both bacteria and fungi. Notably, the complete inhibition of Penicillium italicum and Geotrichum candidum, two fungi detrimental to the postharvest quality of fruits, as well as the complete destruction of viable cells for Gram-positive and Gram-negative bacteria was observed when these organisms were incubated in contact with QAC waxes or dispersed in an aqueous system at a concentration of 1.0 mM. Comparatively, benzalkonium chloride with an alkyl chain length of 10 carbon can completely inhibit Staphylococcus aureus at a concentration of 1.44 mM. The properties of the attached hydrophobic groups appeared to exert a strong influence on antimicrobial activity presumably due to differences in molecular orientation, size, and differences among microbial cellular structures.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/química , Fungos
4.
Plant Dis ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36825322

RESUMO

Globisporangium sylvaticum (syn. Pythium sylvaticum), is an oomycete that causes root rot and damping off of field crops, ornamentals, and vegetables. Several species in Pythiaceae are associated with black root rot of strawberry [(Fragaria × ananassa) Duchesne] (Millner 2006). Mature, stunted 'Chandler' strawberry plants, with reduced shoot vigor and black necrotic roots, were collected from Rhea County (June 2018) and Cumberland County, TN (May 2019). Aboveground symptoms occurred in low incidence (<5% of plants) in the fields. Plant roots were rinsed with tap water, cut into 1 to 3 cm pieces, and surface-disinfested (70% ethanol, 1 min) followed by a sterile water rinse. Root segments were crushed, placed on 20% V8 juice agar, and incubated in the dark at 21°C for 3 days. White fluffy mycelia grew from a majority of roots and coenocytic hyphae with globose hyphal swellings, delimited from hyphae by septa, were observed with microscopy. Hyphae were initially branched, curled, hyaline, and aseptate; however, septations were observed in older cultures. Globose structures (terminal and intercalary) were identified as sporangia [11 to 32 (avg. 22.1) µm diameter] when zoospores were observed (Parikh et al. 2022). Oospores [9 to 21 (avg. 16) µm diameter] were globose, smooth, aplerotic, and thick-walled. Oogonia, with or without one or more inflated antheridia, were observed when isolates were paired in culture, characteristics consistent with descriptions of Campbell and Hendrix (1967), Pratt and Green (1971), van der Plaats-Niterink (1981), and Uzuhashi et al. (2010). Genomic DNA was extracted (Extract-N-Amp™; Sigma-Aldrich, MO) for PCR amplification of internal transcribed spacer (ITS) regions of rDNA with primers ITS1/ITS4 (White et al. 1990); ITS and large subunit rRNA regions with primers UN-up18S42/UN-lo28S22 (Robideau et al. 2011); and cytochrome c oxidase subunit I (COI) mitochondrial DNA with primers OomCoxI-Levup/OomCoxI-Levlo (Robideau et al. 2011). Primers ITS1/ITS4 were used to amplify isolate TN (GenBank Accession MW386310, which had 100% homology with reference isolate MK326528). Primers UN-up18S42/UN-lo28S22 amplified isolates SAP18 and OO1 (Accessions MZ881935 and MZ881936, which had 99.8% homology with HQ665236), and COI primers amplified isolate SAP18 (Accession OK020192, which had 100% homology with GU071816 and KT692835). To satisfy Koch's postulates, inoculum of G. sylvaticum grown on autoclaved wheat seeds was added (5% w/v) to planting mix (1 peat:1 sand, v/v). Young, rooted strawberry plants were planted in 1.2-L pots with infested (n = 6) and control (no pathogen, n = 6) mixes, which was saturated with deionized water. Pots were covered with clear plastic for 48 h to maintain high humidity. Plants were grown in a greenhouse (24°C avg.) for 8 weeks. The disease assay was repeated. All plants in infested mix died, with black, necrotic roots. Plants in the control mix were healthy and well-established. The pathogen was reisolated from roots of all inoculated plants and confirmed to be G. sylvaticum based on morphology and molecular analyses. Root disease of strawberry caused by G. sylvaticum has been reported in the USA (Campbell and Hendrix 1967; Nemec and Sanders 1970; Pratt and Green 1971). This is the first report of G. sylvaticum causing root rot of strawberry in Tennessee. With the loss of methyl bromide, sustainable disease control strategies are needed to provide effective management options for strawberry black root rot.

5.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-34368772

RESUMO

Beauveria bassiana is endophytic in many plant species and has been shown to protect host plants against insect pests and plant pathogens. However, less is known about its activity against plant-parasitic nematodes. In vitro and plant assays were conducted to determine the effect of B. bassiana 11-98 (Bb) on Meloidogyne incognita (root-knot nematode; RKN). Beauveria bassiana was confirmed as an endophyte in 'Rutgers' tomato and colonization patterns of Bb in 'Rutgers' (highly susceptible to RKN) were compared with those in 'Mountain Spring' (less susceptible to RKN). In greenhouse tests with 'Rutgers' at 30 and 60 days after treatment (DAT) with RKN and Bb, there were few differences in plant growth variables among treatments in repeated trials. However, RKN root galling and egg count/root system were enhanced in plants treated with Bb at 60 DAT. In an in vitro assay with egg masses from greenhouse tests, the percentages of hatched eggs, and mobile and immobile nematodes did not differ significantly for RKN and RKN+Bb treatments. The presence of viable Bb from roots was confirmed by collecting egg suspensions from root galls and plating them on selective medium. Colonies of Bb were verified on agar medium, but no parasitism of RKN eggs was observed. Research is needed to investigate factors responsible for increased galling by RKN in the presence of endophytic Bb in 'Rutgers' tomato.

6.
Phytopathology ; 111(8): 1380-1392, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33289405

RESUMO

A meta-analysis of anaerobic soil disinfestation (ASD) efficacy against Fusarium oxysporum and F. oxysporum f. sp. lycopersici was conducted emphasizing effects of environment and organic amendment characteristics and pot and field studies conducted on ASD amendment C:N ratio and soil temperature effects on F. oxysporum f. sp. lycopersici inoculum survival. In a pot study, two organic amendments, dry molasses-based or wheat bran-based, applied at 4 mg of C/g of soil, with 40:1, 30:1, 20:1, and 10:1 C:N ratios, were evaluated against F. oxysporum f. sp. lycopersici at 15 to 25°C. This study was followed by a pot study with temperature regimes of 15 to 25°C and 25 to 35°C and two C:N ratios (20:1 and 40:1), and a field study at 40:1, 30:1, 20:1, and 10:1 C:N ratios, a 30:1 C:N ratio at a lower C rate (2 mg of C/g of soil), and an anaerobic control. Soil temperature >25°C and more labile amendments increased ASD suppression of F. oxysporum/F. oxysporum f. sp. lycopersici in the meta-analysis. In pot studies, F. oxysporum f. sp. lycopersici survival was reduced for molasses-based mixtures at 20:1 and 30:1 C:N ratios compared with wheat bran-based mixtures but not compared with the anaerobic control. At 25 to 35°C, all ASD treatments suppressed F. oxysporum f. sp. lycopersici relative to controls. In the field, all ASD treatments reduced F. oxysporum f. sp. lycopersici survival compared with the anaerobic control, and 4 mg of C/g of soil amendment rates induced higher anaerobic conditions and higher F. oxysporum f. sp. lycopersici mortality compared with the 2 mg of C/g of soil rate. Although amendment C:N ratios from 10 to 40:1 were similarly suppressive of F. oxysporum, lower temperatures reduced ASD effectiveness against F. oxysporum/F. oxysporum f. sp. lycopersici and further work is warranted to enhance suppression at soil temperatures <25°C.


Assuntos
Fusarium , Anaerobiose , Doenças das Plantas , Solo , Temperatura
7.
Front Genet ; 11: 410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499812

RESUMO

Evaluating species diversity and patterns of population genetic variation is an essential aspect of conservation biology to determine appropriate management strategies and preserve the biodiversity of native plants. Habitat fragmentation and potential habitat loss are often an outcome of a reduction in naturally occurring wildfires and controlled prescribed burning, as seen in Helianthus verticillatus (whorled sunflower). This endangered, wild relative of the common sunflower, Helianthus annuus, is endemic to four locations in Alabama, Georgia, and Tennessee, United States. Despite its endangered status, there is no recovery plan for H. verticillatus, and knowledge related to its basic plant biology and importance in ecosystem services is mostly unknown. In this study, we utilized 14 microsatellite loci to investigate fine-scale population structure and genetic diversity of H. verticillatus individuals found on two sampling sites within the Georgia population. Our results indicated moderate genetic diversity and the presence of two distinct genetic clusters. Analyses of molecular variance indicated that the majority of variance was individually based, thus confirming high genetic differentiation and limited gene flow between H. verticillatus collection sites. The evidence of a population bottleneck in these sites suggests a recent reduction in population size that could be explained by habitat loss and population fragmentation. Also, high levels of linkage disequilibrium were detected, putatively suggesting clonal reproduction among these individuals. Our study provides a better understanding of fine-scale genetic diversity and spatial distribution of H. verticillatus populations in Georgia. Our results can underpin an original recovery plan for H. verticillatus that could be utilized for the conservation of this endangered species and to promote its persistence in the wild.

8.
Molecules ; 24(20)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635046

RESUMO

Sciadopitys verticillata (Sv) produces a white, sticky, latex-like resin with antimicrobial properties. The aims of this research were to evaluate the effects of this resin (Sv resin) on bacterial populations and to determine the impact of its primary volatile components on bioactivity. The impact of sample treatment on chemical composition of Sv resin was analyzed using Fourier transform infrared spectroscopy (FTIR) coupled with principal component analysis. The presence and concentration of volatiles in lyophilized resin were determined using gas chromatography/mass spectrometry (GC/MS). Changes in bacterial population counts due to treatment with resin or its primary volatile components were monitored. Autoclaving of the samples did not affect the FTIR spectra of Sv resin; however, lyophilization altered spectra, mainly in the CH and C=O regions. Three primary bioactive compounds that constituted >90% of volatiles (1R-α-pinene, tricyclene, and ß-pinene) were identified in Sv resin. Autoclaved resin impacted bacterial growth. The resin was stimulatory for some plant and foodborne pathogens (Pseudomonas fluorescens, P. syringae, and Xanthomonas perforans) and antimicrobial for others (Escherichia coli, Bacillus cereus, Agrobacterium tumefaciens, and Erwinia amylovora). Treatment with either 1R-α-pinene or ß-pinene reduced B. cereus population growth less than did autoclaved resin. The complex resin likely contains additional antimicrobial compounds that act synergistically to inhibit bacterial growth.


Assuntos
Anti-Infecciosos/farmacologia , Resinas Vegetais/química , Traqueófitas/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Sinergismo Farmacológico , Microbiologia de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Patologia Vegetal , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Orgânicos Voláteis/química
9.
Molecules ; 23(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513639

RESUMO

Ricefield flatsedge (Cyperus iria L.), a troublesome weed in rice production, actively adapts to ecological niches. In this study, terpenoids were identified as the dominant compounds from organic extracts of C. iria leaves. To understand the role of terpenoid production in plant development and resistance to abiotic and biotic stresses, the dynamics of terpenoid production at different developmental stages, and the regulation of these compounds by stresses were determined. Terpenoid production exhibited temporal and spatial specificity. During vegetative growth, the total concentration of sesquiterpenoids increased and reached a maximum at 70 d after germination, and then decreased until the emergence of inflorescence. Monoterpenoids were only detected from leaves 90 d after germination. During reproductive growth, the total concentration of sesquiterpenoids increased dramatically and mainly accumulated in inflorescences, indicating that the sesquiterpenoids were primarily produced in newly formed and actively growing tissues. The total amount of monoterpenoids, mostly accumulated in flowers, increased until 130 d after germination. Furthermore, accumulation of sesquiterpenoids in leaves was promoted significantly by methyl jasmonate (MeJA) and drought treatment. Infestation by beet armyworm (Spodoptera exigua, BAW) promoted the emission of total sesquiterpenoids significantly and induced the production of more monoterpenoids and sesquiterpenoids specifically. Furthermore, volatiles from C. iria leaves had an anti-fungal effect on Fusarium graminearum. The implications of our findings on the biosynthetic pathways leading to the production of sesquiterpenoids in C. iria as well as their potential as fungicides are discussed.


Assuntos
Antifúngicos/farmacologia , Cyperus/química , Cyperus/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , Plantas Daninhas/química , Estresse Fisiológico/efeitos dos fármacos , Terpenos/farmacologia , Animais , Análise por Conglomerados , Cyperus/efeitos dos fármacos , Folhas de Planta/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Spodoptera/efeitos dos fármacos , Terpenos/química , Fatores de Tempo , Compostos Orgânicos Voláteis/farmacologia
10.
Phytopathology ; 108(3): 342-351, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29045190

RESUMO

Growth chamber and field studies were conducted with organic amendment mixtures of carbon (C) and nitrogen (N) at C:N ratios 10:1, 20:1, 30:1, and 40:1 and amendment rates of C at 2, 4, 6, and 8 mg/g of soil (C:N ratio 30:1) to evaluate anaerobic soil disinfestation (ASD) effects on germination and colonization of Sclerotium rolfsii. In the growth chamber, sclerotial germination was reduced in all ASD treatments regardless of C:N ratio (0.6 to 8.5% germination) or amendment rate (7.5 to 46%) as compared with nonamended controls (21 to 36% and 61 to 96%, respectively). ASD treatment increased Trichoderma spp. colonization of sclerotia, with consistently higher colonization in ASD treatments with amendment rates of C at 2 or 4 mg/g of soil (>87% colonization) compared with nonamended controls (<50% colonization). In the 2014 field study, sclerotial germination was reduced by 24 to 30% in ASD treatments when compared with the nonamended control. Sclerotial colonization by Trichoderma spp. was predominant; however, other potential mycoparasites (i.e., Aspergillus spp., Fusarium spp., zygomycetes, and other fungi) were present in the field study. Amendment C:N ratios in the range of 10:1 to 40:1 were equally effective in reducing sclerotial germination and enhancing colonization by potentially beneficial mycoparasites of sclerotia.


Assuntos
Desinfecção , Microbiologia do Solo , Trichoderma , Anaerobiose , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Doenças das Plantas/microbiologia , Solo/química , Temperatura , Água
11.
Appl Plant Sci ; 3(4)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25909044

RESUMO

PREMISE OF THE STUDY: We developed microsatellites from Fothergilla ×intermedia to establish loci capable of distinguishing species and cultivars, and to assess genetic diversity for use by ornamental breeders and to transfer within Hamamelidaceae. METHODS AND RESULTS: We sequenced a small insert genomic library enriched for microsatellites to develop 12 polymorphic microsatellite loci. The number of alleles detected ranged from four to 15 across five genera within Hamamelidaceae. Shannon's information index ranged from 0.07 to 0.14. CONCLUSIONS: These microsatellite loci provide a set of markers to evaluate genetic diversity of natural and cultivated collections and assist ornamental plant breeders for genetic studies of five popular genera of woody ornamental plants.

12.
Mycologia ; 105(5): 1164-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23709521

RESUMO

Simple sequence repeats (SSR) markers were developed from a small insert genomic library for Bipolaris sorokiniana, a mitosporic fungal pathogen that causes spot blotch and root rot in switchgrass. About 59% of sequenced clones (n = 384) harbored SSR motifs. After eliminating redundant sequences, 196 SSR loci were identified, of which 84.7% were dinucleotide repeats and 9.7% and 5.6% were tri- and tetra-nucleotide repeats, respectively. Primer pairs were designed for 105 loci and 85 successfully amplified loci. Sixteen polymorphic loci were characterized with 15 B. sorokiniana isolates obtained from infected switchgrass plant materials collected from five states in USA. These loci successfully cross-amplified isolates from at least one related species, including Bipolaris oryzae, Bipolaris spicifera and Bipolaris victoriae, that causes leaf spot on switchgrass. Haploid gene diversity per locus across all isolates studied varied 0.633-0.861. Principal component analysis of SSR data clustered isolates according to their respective species. These SSR markers will be a valuable tool for genetic variability and population studies of B. sorokiniana and related species that are pathogenic on switchgrass and other host plants. In addition, these markers are potential diagnostic tools for species in the genus Bipolaris.


Assuntos
Ascomicetos/genética , Repetições de Microssatélites/genética , Panicum/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/isolamento & purificação , Sequência de Bases , Primers do DNA/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Biblioteca Gênica , Loci Gênicos/genética , Genótipo , Dados de Sequência Molecular , Polimorfismo Genético , Análise de Componente Principal , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 18S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
13.
Phytopathology ; 100(5): 493-501, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20373971

RESUMO

Plants in the genus Monarda produce complex essential oils that contain antifungal compounds. The objectives of this research were to identify selections of monarda that reduce Rhizoctonia damping-off of tomato, and to determine relationships between essential oil composition of 13 monarda herbages (dried and ground leaves) and disease suppression. Herbages were grouped into five chemotypes, based on essential oil composition and effective concentrations for reducing growth by 50% for Rhizoctonia solani. Replicated and repeated disease control assays were conducted with monarda herbages in greenhouse medium, with or without Rhizoctonia. Percent survival, seedling height, and stem diameter were evaluated at 8 weeks. Survival, seedling height, and stem diameter in herbage-only treatments were not different from the control (no-herbage, no-pathogen) for most herbage treatments. In the pathogen control (no-herbage + Rhizoctonia), seedling survival was 10% that of the control. In pathogen-infested media, seedling survival ranged from 65 to 80% for treatments with thymol chemotypes and 55 to 65% for carvacrol chemotypes. Effective control of Rhizoctonia damping-off was correlated with phenolic monoterpenes; herbages classified as carvacrol chemotypes effectively protected tomato seedlings from Rhizoctonia damping-off disease without phytotoxicity. This study provides evidence that monarda herbages have potential as growing media amendments for control of Rhizoctonia damping-off disease.


Assuntos
Monarda/química , Óleos Voláteis/farmacologia , Doenças das Plantas/microbiologia , Óleos de Plantas/farmacologia , Rhizoctonia/fisiologia , Solanum lycopersicum/microbiologia , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Óleos Voláteis/química , Óleos de Plantas/química , Rhizoctonia/efeitos dos fármacos
14.
J Invertebr Pathol ; 98(3): 267-70, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18442830

RESUMO

Seed application of Beauveria bassiana 11-98 resulted in endophytic colonization of tomato and cotton seedlings and protection against plant pathogenic Rhizoctonia solani and Pythium myriotylum. Both pathogens cause damping off of seedlings and root rot of older plants. The degree of disease control achieved depended upon the population density of B. bassiana conidia on seed. Using standard plating techniques onto selective medium, endophytic 11-98 was recovered from surface-sterilized roots, stems, and leaves of tomato, cotton, and snap bean seedlings grown from seed treated with B. bassiana 11-98. As the rate of conidia applied to seed increased, the proportion of plant tissues from which B. bassiana 11-98 was recovered increased. For rapid detection of B. bassiana 11-98 in cotton tissues, we developed new ITS primers that produce a PCR product for B. bassiana 11-98, but not for cotton. In cotton samples containing DNA from B. bassiana11-98, the fungus was detected at DNA ratios of 1:1000; B. bassiana 11-98 was detected also in seedlings grown from seed treated with B. bassiana 11-98. Using SEM, hyphae of B. bassiana11-98 were observed penetrating epithelial cells of cotton and ramifying through palisade parenchyma and mesophyll leaf tissues. B. bassiana11-98 induced systemic resistance in cotton against Xanthomonas axonopodis pv. malvacearum (bacterial blight). In parasitism assays, hyphae of B. bassiana 11-98 were observed coiling around hyphae of Pythium myriotylum.


Assuntos
Beauveria/patogenicidade , Fungos Mitospóricos/fisiologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Beauveria/genética , DNA Fúngico/análise , DNA Fúngico/genética , Fabaceae/microbiologia , Gossypium/microbiologia , Hifas/ultraestrutura , Solanum lycopersicum/microbiologia , Fungos Mitospóricos/ultraestrutura , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Reação em Cadeia da Polimerase , Plântula/microbiologia
15.
Appl Environ Microbiol ; 69(6): 3333-43, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12788734

RESUMO

Pseudomonas fluorescens 2-79RN(10) protects wheat against take-all disease caused by Gaeumannomyces graminis var. tritici; however, the level of protection in the field varies from site to site. Identification of soil factors that exert the greatest influence on disease suppression is essential to improving biocontrol. In order to assess the relative importance of 28 soil properties on take-all suppression, seeds were treated with strain 2-79RN(10) (which produces phenazine-1-carboxylate [PCA(+)]) or a series of mutants with PCA(+) and PCA(-) phenotypes. Bacterized seeds were planted in 10 soils, representative of the wheat-growing region in the Pacific Northwest. Sixteen soil properties were correlated with disease suppression. Biocontrol activity of PCA(+) strains was positively correlated with ammonium-nitrogen, percent sand, soil pH, sodium (extractable and soluble), sulfate-sulfur, and zinc. In contrast, biocontrol was negatively correlated with cation-exchange capacity (CEC), exchangeable acidity, iron, manganese, percent clay, percent organic matter (OM), percent silt, total carbon, and total nitrogen. Principal component factor analysis of the 16 soil properties identified a three-component solution that accounted for 87 percent of the variance in disease rating (biocontrol). A model was identified with step-wise regression analysis (R(2) = 0.96; Cp statistic = 6.17) that included six key soil properties: ammonium-nitrogen, CEC, iron, percent silt, soil pH, and zinc. As predicted by our regression model, the biocontrol activity of 2-79RN(10) was improved by amending a soil low in Zn with 50 micro g of zinc-EDTA/g of soil. We then investigated the negative correlation of OM with disease suppression and found that addition of OM (as wheat straw) at rates typical of high-OM soils significantly reduced biocontrol activity of 2-79RN(10).


Assuntos
Ascomicetos/crescimento & desenvolvimento , Controle Biológico de Vetores , Fenazinas/metabolismo , Pseudomonas fluorescens/crescimento & desenvolvimento , Solo/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Compostos Orgânicos/química , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Triticum/microbiologia , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...