Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140043

RESUMO

Because of its efficient and robust gene transfer capability, messenger RNA (mRNA) has become a promising tool in various research fields. The lipid nanoparticle (LNP) is considered to be a fundamental technology for an mRNA delivery system and has been used extensively for the development of RNA vaccines against SARS-CoV-2. We recently developed ssPalm, an environmentally responsive lipid-like material, as a component of LNP for mRNA delivery. In this study, a self-degradable unit (phenyl ester) that confers high transfection activity and an immune stimulating unit (vitamin E scaffold) for high immune activation were combined to design a material, namely, ssPalmE-Phe-P4C2, for vaccine use. To design a simple and user-friendly form of an RNA vaccine based on this material, a freeze-drying-based preparation method for producing a ready-to-use-type LNP (LNP(RtoU)) was used to prepare the LNPssPalmE-Phe. The optimization of the preparation method and the lipid composition of the LNPssPalmE-Phe(RtoU) revealed that dioleoyl-sn-glycero phosphatidylethanolamine (DOPE) was a suitable helper lipid for achieving a high vaccination activity of the LNPssPalmE-Phe(RtoU). Other findings indicated that to maintain particle properties and vaccination activity, a 40% cholesterol content was necessary. A single administration of the LNPssPalmE-Phe(RtoU) that contained mRNA-encoding Ovalbumin (mOVA-LNPssPalmE-Phe(RtoU)) demonstrated a significant suppression of tumor progression in a tumor-bearing mouse OVA-expressing cell line (E.G7-OVA). In summary, the LNPssPalmE-Phe(RtoU) is an easy-to-handle drug delivery system (DDS) for delivering mRNA antigens in immunotherapy.

2.
ACS Nano ; 17(19): 18758-18774, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814788

RESUMO

RNA vaccines based on lipid nanoparticles (LNPs) with in vitro transcribed mRNA (IVT-mRNA) encapsulated are now a currently successful but still evolving modality of vaccines. One of the advantages of RNA vaccines is their ability to induce CD8+ T-cell-mediated cellular immunity that is indispensable for excluding pathogen-infected cells or cancer cells from the body. In this study, we report on the development of LNPs with an enhanced capability for inducing cellular immunity by using an ionizable lipid with a vitamin E scaffold. An RNA vaccine that contained this ionizable lipid and an IVT-mRNA encoding a model antigen ovalbumin (OVA) induced OVA-specific cytotoxic T cell responses and showed an antitumor effect against an E.G7-OVA tumor model. Vaccination with the LNPs conferred protection against lethal infection by Toxoplasma gondii using its antigen TgPF. The vitamin E scaffold-dependent type I interferon response was important for effector CD8+ T cell differentiation induced by the mRNA-LNPs. Our findings also revealed that conventional dendritic cells (cDCs) were essential for achieving CD8+ T cell responses induced by the mRNA-LNPs, while the XCR1-positive subset of cDCs, cDC1 specialized for antigen cross-presentation, was not required. Consistently, the mRNA-LNPs were found to selectively transfect another subset of cDCs, cDC2 that had migrated from the skin to lymph nodes, where they could make vaccine-antigen-dependent contacts with CD8+ T cells. The findings indicate that the activation of innate immune signaling by the adjuvant activity of the vitamin E scaffold and the expression of antigens in cDC2 are important for subsequent antigen presentation and the establishment of antigen-specific immune responses.


Assuntos
Nanopartículas , Linfócitos T Citotóxicos , Animais , Camundongos , Linfócitos T CD8-Positivos , Vitamina E/farmacologia , Vacinas Sintéticas , Vacinas de mRNA , Antígenos , Ovalbumina , RNA Mensageiro/genética , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL , Células Dendríticas
3.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765078

RESUMO

Multiple sclerosis is a disease caused by autoantigen-responsive immune cells that disrupt the myelin in the central nervous system (CNS). Although immunosuppressive drugs are used to suppress symptoms, no definitive therapy exists. As in the experimental autoimmune encephalitis (EAE) model of multiple sclerosis, a partial sequence of the myelin oligodendrocyte glycoprotein (MOG35-55) was identified as a causative autoantigen. This suggests that the induction of immune tolerance that is specific to MOG35-55 would be a fundamental treatment for EAE. We previously reported that lipid nanoparticles (LNPs) containing an anionic phospholipid, phosphatidylserine (PS), in their lipid composition, can be used to deliver mRNA and that this leads to proteins of interest to be expressed in the spleen. In addition to the targeting capability of PS, PS molecules avoid activating the immune system. Physiologically, the recognition of PS on apoptotic cells suppresses immune activation against these cells by releasing cytokines, such as interleukin-10 (IL-10) and transforming growth factor (TGF)-ß that negatively regulate immunity. In this study, we tested whether mRNA delivery of autoantigens to the spleen by PS-LNPs causes the expression of MOG35-55 antigens with minimal immune stimulation and whether this could be used to treat an EAE model by inducing immune tolerance.

4.
Pharmaceutics ; 14(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36015185

RESUMO

The blood-brain barrier (BBB), which is comprised of brain capillary endothelial cells, plays a pivotal role in the transport of drugs from the blood to the brain. Therefore, an analysis of proteins in the endothelial cells, such as transporters and tight junction proteins, which contribute to BBB function, is important for the development of therapeutics for the treatment of brain diseases. However, gene transfection into the vascular endothelial cells of the BBB is fraught with difficulties, even in vitro. We report herein on the development of lipid nanoparticles (LNPs), in which mRNA is encapsulated in a nano-sized capsule composed of a pH-activated and reductive environment-responsive lipid-like material (ssPalm). We evaluated the efficiency of mRNA delivery into non-polarized human brain capillary endothelial cells, hCMEC/D3 cells. The ssPalm LNPs permitted marker genes (GFP) to be transferred into nearly 100% of the cells, with low toxicity in higher concentration. A proteomic analysis indicated that the ssPalm-LNP had less effect on global cell signaling pathways than a Lipofectamine MessengerMAX/GFP-encoding mRNA complex (LFN), a commercially available transfection reagent, even at higher mRNA concentrations.

5.
J Control Release ; 349: 379-387, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35787913

RESUMO

Lymphatic endothelial cells (LECs) that form lymphatic vessels play a pivotal role in immune regulation. It was recently reported that LECs suppress the antigen-dependent anti-tumor immunity in cancer tissues. Thus, regulating the function of LECs is a promising strategy for cancer therapy. The objective of this study was to develop a method for the selective delivery of small interfering RNA (siRNA) to LECs. For this purpose, the siRNA was formulated into nanoparticles (LNPs) to prevent them from being degraded in body fluids and to facilitate their penetration of the cell membrane. A breakthrough technology for achieving this is ONPATTRO®, a world's first siRNA drug. Since LNPs are taken up by hepatocytes relatively well via low-density lipoprotein receptors, most of the LNP systems that have been developed so far target hepatocytes. In this study, we report on the development of a new method for the rapid and convenient method for modifying LNPs with antibodies using the CLick reaction on the Interface of the nanoParticle (CLIP). The CLIP approach was faster and more versatile than the conventional method using amide coupling. As a demonstration, we report on the LEC-targeted siRNA delivery by using antibody-modified LNPs both in vitro and in vivo. The method used for the modification of LNPs is highly promising and has the potential for expanding the LNP-based delivery of nucleic acids in the future.


Assuntos
Nanopartículas , Neoplasias , Ácidos Nucleicos , Amidas , Células Endoteliais/metabolismo , Humanos , Lipídeos , Lipoproteínas LDL , Lipossomos , Neoplasias/metabolismo , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...