Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139063

RESUMO

Managing metastasis at the early stage and detecting and treating submillimeter tumors at early metastasis are crucial for improving cancer prognosis. Angiogenesis is a critical target for developing drugs to detect and inhibit submillimeter tumor growth; however, drug development remains challenging because there are no suitable models for observing the submillimeter tumor mass and the surrounding blood vessels in vivo. We have established a xenograft subcutaneous submillimeter tumor mouse model with HT-29-RFP by transplanting a single spheroid grown on radiation-crosslinked gelatin hydrogel microwells. Here, we developed an in vivo dual-observation method to observe the submillimeter tumor mass and tumor-surface blood vessels using this model. RFP was detected to observe the tumor mass, and a fluorescent angiography agent FITC-dextran was administered to observe blood vessels via stereoscopic fluorescence microscopy. The anti-angiogenesis agent regorafenib was used to confirm the usefulness of this method. This method effectively detected the submillimeter tumor mass and tumor-surface blood vessels in vivo. Regorafenib treatment revealed tumor growth inhibition and angiogenesis downregulation with reduced vascular extremities, segments, and meshes. Further, we confirmed that tumor-surface blood vessel areas monitored using in vivo dual-observation correlated with intratumoral blood vessel areas observed via fluorescence microscopy with frozen sections. In conclusion, this method would be useful in developing anti-angiogenesis agents against submillimeter tumors.


Assuntos
Inibidores da Angiogênese , Neoplasias , Humanos , Camundongos , Animais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/diagnóstico , Proteínas de Fluorescência Verde , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia
2.
Lab Chip ; 20(13): 2354-2363, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32495806

RESUMO

Polydimethylsiloxane (PDMS) has many desirable features for microfluidics applications, particularly in diagnostics and pharmaceuticals, but its hydrophobicity and the lack of a practical method for bonding PDMS layers limit its use. Moreover, the flexibility of PDMS causes unwanted deformation during use in some applications. Here, we report a simple method for solving these problems simultaneously using an electron beam (EB) or γ-rays, which are commonly used for sterilizing medical products. Simply by applying EB or γ-ray irradiation to stacked PDMS layers, we can not only bond the interfaces between the layers by forming Si-O-Si covalent bonds but also achieve long-lasting hydrophilization and sterilization of the internal microchannels and chambers, prevent nonspecific adsorption and absorption of hydrophobic small molecules, and enhance the mechanical strength of the material by converting bulk PDMS into a Si-Ox-rich (where x is 3 or 4) structure though crosslinking. Unlike the one-at-a-time plasma process, EBs and γ-rays can penetrate through many stacked layers of PDMS sealed in their final package, enabling batch modification and bonding. The method requires no chemical crosslinkers, adhesive agents, or fillers; hence, it does not undermine the advantages of PDMS such as ease of molding in soft lithography, biocompatibility, and optical transparency. Furthermore, bonding is achieved with high-throughput yield because it occurs after re-adjustable alignment. We demonstrate that this method is applicable in the mass production of 3D integrated PDMS microfluidic chips with some glass-like properties as well as for 3D structures with complex shapes that are difficult to fabricate with plastic or glass.

3.
Nanotechnology ; 23(49): 495307, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23165355

RESUMO

The development of several kinds of micro/nanofabrication techniques has resulted in many innovations in the micro/nanodevices that support today's science and technology. With feature miniaturization, the fabrication tools have shifted from light to ionizing radiation. Here, we propose a simple micro/nanofabrication technique for organic materials using a scanning beam (SB) of ionizing radiation. By controlling the scission/crosslinking of the material via three-dimensional energy-deposition distribution of the SB, appropriate solvents can easily peel off only the crosslinked region from the bulk material. The technique was demonstrated using a focused ion beam and a chlorinated organic polymer. The polymer underwent main-chain scission upon irradiation, but it crosslinked after high-dose irradiation. Appropriate solvents could easily peel off only the crosslinked region from the bulk material. The technique, 'nanobead from nanocup', enabled the production of desired structures such as nanowires and nanomembranes. It can be also applied to the micro/nanofabrication of functional materials.


Assuntos
Reagentes de Ligações Cruzadas/química , Nanosferas/química , Nanosferas/efeitos da radiação , Compostos Orgânicos/química , Polímeros/química , Reagentes de Ligações Cruzadas/efeitos da radiação , Íons Pesados , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular , Nanosferas/ultraestrutura , Compostos Orgânicos/efeitos da radiação , Tamanho da Partícula , Polímeros/efeitos da radiação , Propriedades de Superfície/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...