Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cancer Immunol Immunother ; 72(7): 2357-2373, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36939854

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) is an immunologically cold disease with dismal outcomes. Cryoablation destroys cancer tissue, releases tumor-associated antigens and creates a pro-inflammatory microenvironment, while dendritic cells (DCs) activate immune responses through processing of antigens. Immunotherapy combinations could enhance the anti-tumor efficacy. This open-label, single-arm, single-center phase I trial determined the safety and tolerability of combining cryoablation and autologous immature DC, without and with checkpoint inhibitors. Immune responses and clinical outcomes were evaluated. Patients with mCRPC, confirmed metastases and intact prostate gland were included. The first participants underwent prostate cryoablation with intratumoral injection of autologous DCs in a 3 + 3 design. In the second part, patients received cryoablation, the highest acceptable DC dose, and checkpoint inhibition with either ipilimumab or pembrolizumab. Sequentially collected information on adverse events, quality of life, blood values and images were analyzed by standard descriptive statistics. Neither dose-limiting toxicities nor adverse events > grade 3 were observed in the 18 participants. Results indicate antitumor activity through altered T cell receptor repertoires, and 33% durable (> 46 weeks) clinical benefit with median 40.7 months overall survival. Post-treatment pain and fatigue were associated with circulating tumor cell (CTC) presence at inclusion, while CTC responses correlated with clinical outcomes. This trial demonstrates that cryoimmunotherapy in mCRPC is safe and well tolerated, also for the highest DC dose (2.0 × 108) combined with checkpoint inhibitors. Further studies focusing on the biologic indications of antitumor activity and immune system activation could be considered through a phase II trial focusing on treatment responses and immunologic biomarkers.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Células Dendríticas , Ipilimumab/uso terapêutico , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/terapia , Qualidade de Vida , Microambiente Tumoral
2.
Front Pharmacol ; 13: 836724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712699

RESUMO

Our drug discovery model has identified two novel STAT3 SH2 domain inhibitors 323-1 and 323-2 (delavatine A stereoisomers) in a series of experiments. In silico computational modeling, drug affinity responsive target stability (DARTS), and fluorescence polarization (FP) assays altogether determined that 323-1 and 323-2 directly target the STAT3 SH2 domain and inhibited both phosphorylated and non-phosphorylated STAT3 dimerization. Computational docking predicted that compound 323s bind to three subpockets of the STAT3 SH2 domain. The 323s inhibition of STAT3 dimerization was more potent than the commercial STAT3 SH2 domain inhibitor S3I-201 in the co-immunoprecipitation assay, correlating with computational docking data. The fluorescence polarization assay further confirmed that the compound 323s target the STAT3 SH2 domain by competitively abrogating the interaction between STAT3 and the SH2-binding peptide GpYLPQTV. Compared with S3I-201, the 323 compounds exhibited stronger inhibition of STAT3 and reduced the level of IL-6-stimulated phosphorylation of STAT3 (Tyr705) in LNCaP cells over the phosphorylation of STAT1 (Tyr701) induced by IFN-É£ in PC3 cells or the phosphorylation of STAT1 (Ser727) in DU145 cells. Both compounds downregulated STAT3 target genes MCL1 and cyclin D1. Thus, the two compounds are promising lead compounds for the treatment of cancers with hyper-activated STAT3.

3.
Biomedicines ; 10(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203681

RESUMO

GATA2 has been shown to be an important transcription factor together with androgen receptor (AR) in prostate cancer cells. Less is known about GATA2 in benign prostate epithelial cells. We have investigated if GATA2 exogenous expression in prostate epithelial basal-like cells could induce AR transcription or luminal differentiation. Prostate epithelial basal-like (transit amplifying) cells were transduced with lentiviral vector expressing GATA2. Luminal differentiation markers were assessed by RT-qPCR, Western blot and global gene expression microarrays. We utilized our previously established AR and androgen-dependent fluorescence reporter assay to investigate AR activity at the single-cell level. Exogenous GATA2 protein was rapidly and proteasome-dependently degraded. GATA2 protein expression was rescued by the proteasome inhibitor MG132 and partly by mutating the target site of the E3 ligase FBXW7. Moreover, MG132-mediated proteasome inhibition induced AR mRNA and additional luminal marker gene transcription in the prostate transit amplifying cells. Different types of intrinsic mechanisms restricted GATA2 expression in the transit amplifying cells. The appearance of AR mRNA and additional luminal marker gene expression changes following proteasome inhibition suggests control of essential cofactor(s) of AR mRNA expression and luminal differentiation at this proteolytic level.

4.
Biomedicines ; 9(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34440153

RESUMO

Modulation of ß-catenin signaling has attractive therapeutic potential in cancer immunotherapy. Several studies have found that ß-catenin can mediate immune evasion in cancer and promote anti-inflammatory features of antigen-presenting dendritic cells. Many small molecular compounds that inhibit Wnt/ß-catenin signaling are currently in clinical development, but none have entered routine clinical use. New inhibitors of ß-catenin signaling are consequently desirable. Here, we have tested, in monocyte-derived dendritic cells, the effects of two small molecular compounds, axitinib and nitazoxanide, that previously have been discovered to inhibit ß-catenin signaling in colon cancer cells. Immature and lipopolysaccharide-matured dendritic cells prepared from healthy blood donor buffy coats were stimulated with 6-bromoindirubin-3'-oxime (6-BIO) to boost basal ß-catenin activity, and the effects of axitinib and nitazoxanide were compared with the commercial ß-catenin inhibitor ICG-001. Assays, including genome-wide RNA-sequencing, indicated that neither axitinib nor nitazoxanide demonstrated considerable ß-catenin inhibition. Both compounds were found to be less toxic to monocyte-derived dendritic cells than either 6-BIO or ICG-001. Axitinib stimulated several aspects of dendritic cell function, such as IL12-p70 secretion, and counteracted IL-10 secretion, according to the present study. However, neither axitinib nor nitazoxanide were found to be efficient ß-catenin inhibitors in monocyte-derived dendritic cells.

5.
Front Immunol ; 11: 438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292402

RESUMO

The transcription factor ß-catenin is able to induce tolerogenic/anti-inflammatory features in different types of dendritic cells (DCs). Monocyte-derived dendritic cells (moDCs) have been widely used in dendritic cell-based cancer therapy, but so far with limited clinical efficacy. We wanted to investigate the hypothesis that aberrant differentiation or induction of dual pro- and anti-inflammatory features may be ß-catenin dependent in moDCs. ß-catenin was detectable in both immature and lipopolysaccharide (LPS)-stimulated DCs. The ß-catenin inhibitor ICG-001 dose-dependently increased the pro-inflammatory signature cytokine IL-12p70 and decreased the anti-inflammatory signature molecule IL-10. The ß-catenin activator 6-bromoindirubin-3'-oxime (6-BIO) dose-dependently increased total and nuclear ß-catenin, and this was associated with decreased IL-12p70, increased IL-10, and reduced surface expression of activation markers, such as CD80 and CD86, and increased expression of inhibitory markers, such as PD-L1. 6-BIO and ICG-001 competed dose-dependently regarding these features. Genome-wide mRNA expression analyses further underscored the dual development of pro- and anti-inflammatory features of LPS-matured moDCs and suggest a role for ß-catenin inhibition in production of more potent therapeutic moDCs.


Assuntos
Células Dendríticas/imunologia , Inflamação/imunologia , Monócitos/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica , Indóis/farmacologia , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Lipopolissacarídeos/imunologia , Oximas/farmacologia , Pirimidinonas/farmacologia , beta Catenina/metabolismo
6.
Nat Chem Biol ; 14(1): 94-101, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29083417

RESUMO

Wnt (wingless)/ß-catenin signaling is critical for tumor progression and is frequently activated in colorectal cancer as a result of the mutation of adenomatous polyposis coli (APC); however, therapeutic agents targeting this pathway for clinical use are lacking. Here we report that nitazoxanide (NTZ), a clinically approved antiparasitic drug, efficiently inhibits Wnt signaling independent of APC. Using chemoproteomic approaches, we have identified peptidyl arginine deiminase 2 (PAD2) as the functional target of NTZ in Wnt inhibition. By targeting PAD2, NTZ increased the deamination (citrullination) and turnover of ß-catenin in colon cancer cells. Replacement of arginine residues disrupted the transcriptional activity, and NTZ induced degradation of ß-catenin. In Wnt-activated colon cancer cells, knockout of either PAD2 or ß-catenin substantially increased resistance to NTZ treatment. Our data highlight the potential of NTZ as a modulator of ß-catenin citrullination for the treatment of cancer patients with Wnt pathway mutations.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Tiazóis/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Citrulinação , Neoplasias do Colo/patologia , Técnicas de Inativação de Genes , Humanos , Nitrocompostos , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
7.
PLoS One ; 12(6): e0177861, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28570625

RESUMO

The androgen receptor (AR) transcription factor plays a key role in the development and progression of prostate cancer, as is evident from the efficacy of androgen-deprivation therapy, AR is also the most frequently mutated gene, in castration resistant prostate cancer (CRPC). AR has therefore become an even more attractive therapeutic target in aggressive and disseminated prostate cancer. To investigate mechanisms of AR and AR target gene activation in different subpopulations of prostate cancer cells, a toolkit of AR expressor and androgen response element (ARE) reporter vectors were developed. Three ARE reporter vectors were constructed with different ARE consensus sequences in promoters linked to either fluorescence or luciferase reporter genes in lentiviral vector backbones. Cell lines transduced with the different vectors expressed the reporters in an androgen-dependent way according to fluorescence microscopy, flow cytometry and multi-well fluorescent and luminescence assays. Interestingly, the background reporter activity in androgen-depleted medium was significantly higher in LNCaP cells compared to the prostate transit amplifying epithelial cell lines, EP156T-AR and 957E/hTERT-AR with exogenous AR. The androgen-induced signal to background was much higher in the latter benign prostate cells than in LNCaP cells. Androgen-independent nuclear localization of AR was seen in LNCaP cells and reduced ARE-signaling was seen following treatment with abiraterone, an androgen synthesis inhibitor. The ARE reporter activity was significantly stronger when stimulated by androgens than by ß-estradiol, progesterone and dexamethasone in all tested cell types. Finally, no androgen-induced ARE reporter activity was observed in tumorigenic mesenchymal progeny cells of EP156T cells following epithelial to mesenchymal transition. This underscores the observation that expression of the classical luminal differentiation transcriptome is restricted in mesenchymal type cells with or without AR expression, and presence of androgen.


Assuntos
Genes Reporter , Próstata/fisiologia , Receptores Androgênicos/fisiologia , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Próstata/citologia , Receptores Androgênicos/genética , Transfecção
8.
Oncotarget ; 8(6): 9696-9707, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28039471

RESUMO

Aneuploidy is a widely studied prognostic marker in endometrial cancer (EC), however, not implemented in clinical decision-making. It lacks validation in large prospective patient cohorts adjusted for currently standard applied prognostic markers, including estrogen/progesterone receptor status (ER/PR). Also, little is known about aneuploidy-related transcriptional alterations, relevant for understanding its role in EC biology, and as therapeutic target.We included 825 EC patients with available ploidy status and comprehensive clinicopathologic characterization to analyze ploidy as a prognostic marker. For 144 patients, gene expression data were available to explore aneuploidy-related transcriptional alterations.Aneuploidy was associated with high age, FIGO stage and grade, non-endometrioid histology, ER/PR negativity, and poor survival (p-values<0.001). In patients with ER/PR negative tumors, aneuploidy independently predicted poor survival (p=0.03), lymph node metastasis (p=0.007) and recurrence (p=0.002). A prognostic 'aneuploidy signature', linked to low expression of chromosome 15q genes, was identified and validated in TCGA data.In conclusion, aneuploidy adds prognostic information in ER/PR negative EC, identifying high-risk patients that could benefit from more aggressive therapies. The 'aneuploidy signature' equally identifies these aggressive tumors and suggests a link between aneuploidy and low expression of 15q genes. Integrated analyses point at various dysregulated pathways in aneuploid EC, underlining a complex biology.


Assuntos
Aneuploidia , Biomarcadores Tumorais/genética , Cromossomos Humanos Par 15 , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Transcrição Gênica , Idoso , Biomarcadores Tumorais/análise , Progressão da Doença , Neoplasias do Endométrio/mortalidade , Neoplasias do Endométrio/patologia , Feminino , Citometria de Fluxo , Predisposição Genética para Doença , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Fenótipo , Modelos de Riscos Proporcionais , Receptores de Estrogênio/análise , Receptores de Progesterona/análise , Fatores de Risco , Fatores de Tempo , Transcriptoma , Resultado do Tratamento
9.
Oncotarget ; 8(63): 106989-107001, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29291005

RESUMO

Endometrial cancer development is strongly linked to obesity, but knowledge regarding the influence of excess weight on endometrial tumor signaling pathways remains scarce. We therefore analyzed reverse phase protein array (RPPA) data for obesity-related protein expression patterns, using one training (n=272) and two test cohorts (n=68; n=178) of well-annotated samples from women treated for endometrioid endometrial cancer. Gene expression profiling and immunohistochemistry were used for cross-platform validation. Body mass index (BMI) was significantly correlated with progesterone receptor (PR) expression and a hormone receptor protein signature, across all cohorts. In two of the cohorts, BMI was negatively correlated with RTK- and MAPK-pathway activation, particularly phosphorylated MAPK T202 Y204 (p-MAPK) level. Using stepwise selection modelling, a BMI-associated protein signature, including phosphorylated estrogen receptor α S118 (p-ERα) and p-MAPK, was identified. In the subset of FIGO stage 1, grade 1-2 tumors, obese patients (BMI≥30) had better survival compared to non-obese patients in the two cohorts with longest follow-up time (p=0.042, p=0.058). Non-obese patients had higher p-MAPK levels, whereas obese patients had higher p-ERα levels and enrichment of gene signatures related to estrogen signaling, inflammation, immune signaling and hypoxia. In subgroup analysis of non-obese patients with FIGO stage 1 tumors, low PI3K-activation was associated with reduced survival (p=0.002, training cohort). In conclusion, increasing BMI is associated with increased PR and p-ERα levels and reduced MAPK signaling, both in all patients and in subsets with predicted excellent prognosis. The MAPK-pathway represents a potential therapeutic target in non-obese patients with low stage and low grade tumors.

10.
Proc Natl Acad Sci U S A ; 113(33): 9339-44, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27482107

RESUMO

Oncogenic mutations of the Wnt (wingless)/ß-catenin pathway are frequently observed in major cancer types. Thus far, however, no therapeutic agent targeting Wnt/ß-catenin signaling is available for clinical use. Here we demonstrate that axitinib, a clinically approved drug, strikingly blocks Wnt/ß-catenin signaling in cancer cells, zebrafish, and Apc(min/+) mice. Notably, axitinib dramatically induces Wnt asymmetry and nonrandom DNA segregation in cancer cells by promoting nuclear ß-catenin degradation independent of the GSK3ß (glycogen synthase kinase3ß)/APC (adenomatous polyposis coli) complex. Using a DARTS (drug affinity-responsive target stability) assay coupled to 2D-DIGE (2D difference in gel electrophoresis) and mass spectrometry, we have identified the E3 ubiquitin ligase SHPRH (SNF2, histone-linker, PHD and RING finger domain-containing helicase) as the direct target of axitinib in blocking Wnt/ß-catenin signaling. Treatment with axitinib stabilizes SHPRH and thereby increases the ubiquitination and degradation of ß-catenin. Our findings suggest a previously unreported mechanism of nuclear ß-catenin regulation and indicate that axitinib, a clinically approved drug, would provide therapeutic benefits for cancer patients with aberrant nuclear ß-catenin activation.


Assuntos
Divisão Celular/efeitos dos fármacos , Imidazóis/farmacologia , Indazóis/farmacologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/fisiologia , Animais , Axitinibe , DNA Helicases/fisiologia , Glicogênio Sintase Quinase 3 beta/fisiologia , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração/efeitos dos fármacos , Ubiquitina-Proteína Ligases/fisiologia , Peixe-Zebra
11.
BMC Cancer ; 16: 377, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27378372

RESUMO

BACKGROUND: Expression of the androgen receptor (AR) is associated with androgen-dependent proliferation arrest and terminal differentiation of normal prostate epithelial cells. Additionally, activation of the AR is required for survival of benign luminal epithelial cells and primary cancer cells, thus androgen deprivation therapy (ADT) leads to apoptosis in both benign and cancerous tissue. Escape from ADT is known as castration-resistant prostate cancer (CRPC). In the course of CRPC development the AR typically switches from being a cell-intrinsic inhibitor of normal prostate epithelial cell proliferation to becoming an oncogene that is critical for prostate cancer cell proliferation. A clearer understanding of the context dependent activation of the AR and its target genes is therefore desirable. METHODS: Immortalized human prostate basal epithelial EP156T cells and progeny cells that underwent epithelial to mesenchymal transition (EMT), primary prostate epithelial cells (PrECs) and prostate cancer cell lines LNCaP, VCaP and 22Rv1 were used to examine context dependent restriction and activation of the AR and classical target genes, such as KLK3. Genome-wide gene expression analyses and single cell protein analyses were applied to study the effect of different contexts. RESULTS: A variety of growth conditions were tested and found unable to activate AR expression and transcription of classical androgen-dependent AR target genes, such as KLK3, in prostate epithelial cells with basal cell features or in mesenchymal type prostate cells. The restriction of androgen- and AR-dependent transcription of classical target genes in prostate basal epithelial cells was at the level of AR expression. Exogenous AR expression was sufficient for androgen-dependent transcription of AR target genes in prostate basal epithelial cells, but did not exert a positive feedback on endogenous AR expression. Treatment of basal prostate epithelial cells with inhibitors of epigenetic gene silencing was not efficient in inducing androgen-dependent transcription of AR target genes, suggesting the importance of missing cofactor(s). CONCLUSIONS: Regulatory mechanisms of AR and androgen-dependent AR target gene transcription are insufficiently understood and may be critical for prostate cancer initiation, progression and escape from standard therapy. The present model is useful for the study of context dependent activation of the AR and its transcriptome.


Assuntos
Redes Reguladoras de Genes , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética , Ligação Proteica , Análise de Sequência de RNA/métodos , Análise de Célula Única
12.
Cancer Res ; 73(23): 7090-100, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24101153

RESUMO

How prostate cancer is initiated remains a topic of debate. In an effort to establish a human model of prostate carcinogenesis, we adapted premalignant human prostate EPT2-D5 cells to protein-free medium to generate numerous tight prostate spheres (D5HS) in monolayer culture. In contrast to EPT2-D5 cells, the newly generated D5HS efficiently formed large subcutaneous tumors and subsequent metastases in vivo, showing the tumorigenicity of D5HS spheres. A striking production of interleukin (IL)-6 mRNA and protein was found in D5HS cells. The essential roles of IL-6 and the downstream STAT3 signaling in D5HS tumor sphere formation were confirmed by neutralizing antibody, chemical inhibitors, and fluorescent pathway reporter. In addition, elevated reactive oxygen species (ROS) produced upon protein depletion was required for the activation of IL-6/STAT3 in D5HS. Importantly, a positive feedback loop was found between ROS and IL-6 during tumor sphere formation. The association of ROS/IL-6/STAT3 to the carcinogenesis of human prostate cells was further examined in xenograft tumors and verified by limiting dilution implantations. Collectively, we have for the first time established human prostate tumor-initiating cells based on physiologic adaption. The intrinsic association of ROS and IL-6/STAT3 signaling in human prostate carcinogenesis shed new light on this relationship and define therapeutic targets in this setting.


Assuntos
Interleucina-6/fisiologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/farmacologia , Fator de Transcrição STAT3/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Esferoides Celulares/fisiologia , Células Tumorais Cultivadas
13.
PLoS One ; 8(5): e62547, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658742

RESUMO

The transcription factor p63 is central for epithelial homeostasis and development. In our model of epithelial to mesenchymal transition (EMT) in human prostate cells, p63 was one of the most down-regulated transcription factors during EMT. We therefore investigated the role of p63 in EMT. Over-expression of the predominant epithelial isoform ΔNp63α in mesenchymal type cells of the model led to gain of several epithelial characteristics without resulting in a complete mesenchymal to epithelial transition (MET). This was corroborated by a reciprocal effect when p63 was knocked down in epithelial EP156T cells. Global gene expression analyses showed that ΔNp63α induced gene modules involved in both cell-to-cell and cell-to-extracellular-matrix junctions in mesenchymal type cells. Genome-wide analysis of p63 binding sites using ChIP-seq analyses confirmed binding of p63 to regulatory areas of genes associated with cell adhesion in prostate epithelial cells. DH1 and ZEB1 are two elemental factors in the control of EMT. Over-expression and knock-down of these factors, respectively, were not sufficient alone or in combination with ΔNp63α to reverse completely the mesenchymal phenotype. The partial reversion of epithelial to mesenchymal transition might reflect the ability of ΔNp63α, as a key co-ordinator of several epithelial gene expression modules, to reduce epithelial to mesenchymal plasticity (EMP). The utility of ΔNp63α expression and the potential of reduced EMP in order to counteract metastasis warrant further investigation.


Assuntos
Próstata/citologia , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Antígenos CD , Sequência de Bases , Caderinas/metabolismo , Linhagem Celular , Forma Celular , Sequência Consenso , Epigênese Genética , Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Expressão Gênica , Ontologia Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Junções Intercelulares/metabolismo , Laminina/genética , Masculino , Fenótipo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco
14.
Int J Cancer ; 133(3): 544-55, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23354685

RESUMO

MicroRNAs play critical roles in tumorigenesis and metastasis. Here, we report the dual functions of miR-182 and miR-203 in our previously described prostate cell model. MiR-182 and miR-203 were completely repressed during epithelial to mesenchymal transition (EMT) from prostate epithelial EP156T cells to the progeny mesenchymal nontransformed EPT1 cells. Re-expression of miR-182 or miR-203 in EPT1 cells and prostate cancer PC3 cells induced mesenchymal to epithelial transition (MET) features. Simultaneously, miR-182 and miR-203 provided EPT1 cells with the ability to self-sufficiency of growth signals, a well-recognized oncogenic feature. Gene expression profiling showed high overlap of the genes affected by miR-182 and miR-203. SNAI2 was identified as a common target of miR-182 and miR-203. Knock-down of SNAI2 in EPT1 cells phenocopied re-expression of either miR-182 or miR-203 regarding both MET and self-sufficiency of growth signals. Strikingly, considerable overlaps of changed genes were found between the re-expression of miR-182/203 and knock-down of SNAI2. Finally, P-cadherin was identified as a direct target of SNAI2. We conclude that miR-182 and miR-203 induce MET features and growth factor independent growth via repressing SNAI2 in prostate cells. Our findings shed new light on the roles of miR-182/203 in cancer related processes.


Assuntos
MicroRNAs/metabolismo , Próstata/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Animais , Caderinas/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Próstata/citologia , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética
15.
Exp Cell Res ; 317(2): 234-47, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20969863

RESUMO

Epithelial to mesenchymal transition (EMT) is pivotal in tumor metastasis. Our previous work reported an EMT model based on primary prostate epithelial cells (EP156T) which gave rise to cells with mesenchymal phenotype (EPT1) without malignant transformation. To promote prostate cell transformation, cells were maintained in saturation density cultures to select for cells overriding quiescence. Foci formed repeatedly following around 8 weeks in confluent EPT1 monolayers. Only later passage EPT1, but not EP156T cells of any passage, could form foci. Cells isolated from the foci were named EPT2 and formed robust colonies in soft agar, a malignant feature present neither in EP156T nor in EPT1 cells. EPT2 cells showed additional malignant traits in vitro, including higher ability to proliferate following confluence, higher resistance to apoptosis and lower dependence on exogenous growth factors than EP156T and EPT1 cells. Microarray profiling identified gene sets, many of which belong to cell junction modules, that changed expression from EP156T to EPT1 cells and continued to change from EPT1 to EPT2 cells. Our findings provide a novel stepwise cell culture model in which EMT emerges independently of transformation and is associated with subsequent accumulation of malignant features in prostate cells. Reprogramming of cell junction modules is involved in both steps.


Assuntos
Desdiferenciação Celular , Transformação Celular Neoplásica/patologia , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Junções Intercelulares/patologia , Próstata/citologia , Apoptose , Técnicas de Cultura de Células , Linhagem Celular , Movimento Celular , Proliferação de Células , Células Clonais , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Cariotipagem , Masculino , Repetições de Microssatélites , Próstata/metabolismo , Próstata/patologia
16.
BMC Genomics ; 11: 669, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21108828

RESUMO

BACKGROUND: Previously we reported extensive gene expression reprogramming during epithelial to mesenchymal transition (EMT) of primary prostate cells. Here we investigated the hypothesis that specific histone and DNA methylations are involved in coordination of gene expression during EMT. RESULTS: Genome-wide profiling of histone methylations (H3K4me3 and H3K27me3) and DNA methylation (DNAMe) was applied to three cell lines at different stages of a stepwise prostate cell model involving EMT and subsequent accumulation of malignant features. Integrated analyses of epigenetic promoter modifications and gene expression changes revealed strong correlations between the dynamic changes of histone methylations and gene expression. DNA methylation was weaker associated with global gene repression, but strongly correlated to gene silencing when genes co-modified by H3K4me3 were excluded. For genes labeled with multiple epigenetic marks in their promoters, the level of transcription was associated with the net signal intensity of the activating mark H3K4me3 minus the repressive marks H3K27me3 or DNAMe, indicating that the effect on gene expression of bivalent marks (H3K4/K27me3 or H3K4me3/DNAMe) depends on relative modification intensities. Sets of genes, including epithelial cell junction and EMT associated fibroblast growth factor receptor genes, showed corresponding changes concerning epigenetic modifications and gene expression during EMT. CONCLUSIONS: This work presents the first blueprint of epigenetic modifications in an epithelial cell line and the progeny that underwent EMT and shows that specific histone methylations are extensively involved in gene expression reprogramming during EMT and subsequent accumulation of malignant features. The observation that transcription activity of bivalently marked genes depends on the relative labeling intensity of individual marks provides a new view of quantitative regulation of epigenetic modification.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Próstata/metabolismo , Próstata/patologia , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/genética , Inativação Gênica , Genoma Humano/genética , Histonas , Humanos , Lisina/metabolismo , Masculino , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transcrição Gênica
17.
PLoS One ; 4(7): e6381, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19636430

RESUMO

Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimethyl-alpha-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO(2) = 2 bar, 4 exposures à 90 minutes), whereas the control group was housed under normal atmosphere (1 bar, pO(2) = 0.2 bar). Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (approximately 16%) after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the "switches" of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects.


Assuntos
Adenocarcinoma/patologia , Células Epiteliais/citologia , Hiperóxia/tratamento farmacológico , Mesoderma/citologia , Modelos Biológicos , Animais , Feminino , Imuno-Histoquímica , Ratos , Ratos Sprague-Dawley
18.
APMIS ; 117(5-6): 382-99, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19400863

RESUMO

Viruses enter host cells in order to complete their life cycles and have evolved to exploit host cell structures, regulatory factors and mechanisms. The virus and host cell interactions have consequences at multiple levels, spanning from evolution through disease to models and tools for scientific discovery and treatment. Virus-induced human cancers arise after a long duration of time and are monoclonal or oligoclonal in origin. Cancer is therefore a side effect rather than an essential part of viral infections in humans. Still, 15-20% of all human cancers are caused by viruses. A review of tumour virology shows its close integration in cancer research. Viral tools and experimental models have been indispensible for the progress of molecular biology. In particular, retroviruses and DNA tumour viruses have played major roles in our present understanding of the molecular biology of both viruses and the host. Recently, additional complex relationships due to virus and host co-evolution have appeared and may lead to a further understanding of the overall regulation of gene expression programmes in cancer.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Vírus Oncogênicos/fisiologia , Infecções Tumorais por Vírus/virologia , Animais , Leucose Aviária/virologia , Evolução Biológica , Transformação Celular Neoplásica , Galinhas , Vírus de DNA Tumorais/genética , Vírus de DNA Tumorais/patogenicidade , Vírus de DNA Tumorais/fisiologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Genes Virais , Humanos , Mamíferos/virologia , Camundongos , Neoplasias/etiologia , Neoplasias/virologia , Oncogenes , Vírus Oncogênicos/genética , Vírus Oncogênicos/patogenicidade , Interferência de RNA , Pesquisa , Retroviridae/genética , Retroviridae/fisiologia , Infecções por Retroviridae/fisiopatologia , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/fisiopatologia
19.
BMC Cancer ; 9: 77, 2009 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19265549

RESUMO

BACKGROUND: The molecular changes in vivo in acute myeloid leukemia cells early after start of conventional genotoxic chemotherapy are incompletely understood, and it is not known if early molecular modulations reflect clinical response. METHODS: The gene expression was examined by whole genome 44 k oligo microarrays and 12 k cDNA microarrays in peripheral blood leukocytes collected from seven leukemia patients before treatment, 2-4 h and 18-24 h after start of chemotherapy and validated by real-time quantitative PCR. Statistically significantly upregulated genes were classified using gene ontology (GO) terms. Parallel samples were examined by flow cytometry for apoptosis by annexin V-binding and the expression of selected proteins were confirmed by immunoblotting. RESULTS: Significant differential modulation of 151 genes were found at 4 h after start of induction therapy with cytarabine and anthracycline, including significant overexpression of 31 genes associated with p53 regulation. Within 4 h of chemotherapy the BCL2/BAX and BCL2/PUMA ratio were attenuated in proapoptotic direction. FLT3 mutations indicated that non-responders (5/7 patients, 8 versus 49 months survival) are characterized by a unique gene response profile before and at 4 h. At 18-24 h after chemotherapy, the gene expression of p53 target genes was attenuated, while genes involved in chemoresistance, cytarabine detoxification, chemokine networks and T cell receptor were prominent. No signs of apoptosis were observed in the collected cells, suggesting the treated patients as a physiological source of pre-apoptotic cells. CONCLUSION: Pre-apoptotic gene expression can be monitored within hours after start of chemotherapy in patients with acute myeloid leukemia, and may be useful in future determination of therapy responders. The low number of patients and the heterogeneity of acute myeloid leukemia limited the identification of gene expression predictive of therapy response. Therapy-induced gene expression reflects the complex biological processes involved in clinical cancer cell eradication and should be explored for future enhancement of therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide/tratamento farmacológico , Doença Aguda , Adulto , Idoso , Antraciclinas/administração & dosagem , Apoptose/genética , Comunicação Celular/genética , Análise por Conglomerados , Citarabina/administração & dosagem , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Inativação Metabólica/genética , Leucemia Mieloide/sangue , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
PLoS One ; 3(10): e3368, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18852876

RESUMO

BACKGROUND: Epithelial to mesenchymal transition (EMT) has been connected with cancer progression in vivo and the generation of more aggressive cancer cell lines in vitro. EMT has been induced in prostate cancer cell lines, but has previously not been shown in primary prostate cells. The role of EMT in malignant transformation has not been clarified. METHODOLOGY/PRINCIPAL FINDINGS: In a transformation experiment when selecting for cells with loss of contact inhibition, the immortalized prostate primary epithelial cell line, EP156T, was observed to undergo EMT accompanied by loss of contact inhibition after about 12 weeks in continuous culture. The changed new cells were named EPT1. EMT of EPT1 was characterized by striking morphological changes and increased invasion and migration compared with the original EP156T cells. Gene expression profiling showed extensively decreased epithelial markers and increased mesenchymal markers in EPT1 cells, as well as pronounced switches of gene expression modules involved in cell adhesion and attachment. Transformation assays showed that EPT1 cells were sensitive to serum or growth factor withdrawal. Most importantly, EPT1 cells were not able to grow in an anchorage-independent way in soft agar, which is considered a critical feature of malignant transformation. CONCLUSIONS/SIGNIFICANCE: This work for the first time established an EMT model from primary prostate cells. The results show that EMT can be activated as a coordinated gene expression program in association with early steps of transformation. The model allows a clearer identification of the molecular mechanisms of EMT and its potential role in malignant transformation.


Assuntos
Adesão Celular/genética , Células Epiteliais/citologia , Células-Tronco Mesenquimais/citologia , Próstata/citologia , Linhagem Celular , Movimento Celular , Forma Celular , Transformação Celular Neoplásica/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...