Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(21): 7496-7504, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37852250

RESUMO

A first-principles approach to describe electron dynamics in open quantum systems driven far from equilibrium via external time-dependent stimuli is introduced. Within this approach, the driven Liouville-von Neumann methodology is used to impose open boundary conditions on finite model systems whose dynamics is described using time-dependent density functional theory. As a proof of concept, the developed methodology is applied to simple spin-compensated model systems, including a hydrogen chain and a graphitic molecular junction. Good agreement between steady-state total currents obtained via direct propagation and those obtained from the self-consistent solution of the corresponding Sylvester equation indicates the validity of the implementation. The capability of the new computational approach to analyze, from first principles, non-equilibrium dynamics of open quantum systems in terms of temporally and spatially resolved current densities is demonstrated. Future extensions of the approach toward the description of dynamical magnetization and decoherence effects are briefly discussed.

2.
Nat Commun ; 13(1): 4113, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840588

RESUMO

When reducing the size of materials towards the nanoscale, magnetic properties can emerge due to structural variations. Here, we show the reverse effect, where the structure of nanomaterials is controlled by magnetic manipulations. Using the break-junction technique, we find that the interatomic distance in platinum atomic wires is shorter or longer by up to ∼20%, when a magnetic field is applied parallel or perpendicular to the wires during their formation, respectively. The magnetic field direction also affects the wire length, where longer (shorter) wires are formed under a parallel (perpendicular) field. Our experimental analysis, supported by calculations, indicates that the direction of the applied magnetic field promotes the formation of suspended atomic wires with a specific magnetization orientation associated with typical orbital characteristics, interatomic distance, and stability. A similar effect is found for various metal and metal-oxide atomic wires, demonstrating that magnetic fields can control the atomistic structure of different nanomaterials when applied during their formation stage.

3.
Adv Sci (Weinh) ; 9(14): e2102261, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35285174

RESUMO

Zigzag edges in graphitic systems exhibit localized electronic states that drastically affect their properties. Here, room-temperature charge transport experiments across a single graphitic interface are reported, in which the interlayer current is confined to the contact edges. It is shown that the current exhibits pronounced oscillations of up to ≈40 µA with a dominant period of ≈5 Å with respect to lateral displacement that do not directly correspond to typical graphene lattice spacing. The origin of these features is computationally rationalized as quantum mechanical interference of localized edge states showing significant amplitude and interlayer coupling variations as a function of the interface stacking configuration. Such interference effects may therefore dominate the transport properties of low-dimensional graphitic interfaces.

4.
Nat Commun ; 11(1): 4746, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958749

RESUMO

The unusual electronic properties of edges in graphene-based systems originate from the pseudospinorial character of their electronic wavefunctions associated with their non-trivial topological structure. This is manifested by the appearance of pronounced zero-energy electronic states localized at the material zigzag edges that are expected to have a significant contribution to the interlayer transport in such systems. In this work, we utilize a unique experimental setup and electronic transport calculations to quantitatively distinguish between edge and bulk transport, showing that their relative contribution strongly depends on the angular stacking configuration and interlayer potential. Furthermore, we find that, despite of the strong localization of edge state around the circumference of the contact, edge transport in incommensurate interfaces can dominate up to contact diameters of the order of 2 µm, even in the presence of edge disorder. The intricate interplay between edge and bulk transport contributions revealed in the present study may have profound consequences on practical applications of nanoscale twisted graphene-based electronics.

5.
J Chem Theory Comput ; 16(2): 1232-1248, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31846331

RESUMO

Nonequilibrium thermodynamics of the driven resonant-level model is studied using numerical simulations based on the driven Liouville von-Neumann formalism. The approach is first validated against recently obtained analytical results for quasistatic level shifts and the corresponding first-order corrections. The numerical approach is then used to study far-from-equilibrium thermodynamic properties of the system under finite level shift rates. The proposed methodology allows the study of unexplored nonequilibrium thermodynamic regimes in open quantum systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...