Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1857(12): 1943-1948, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27705821

RESUMO

Two mutants, D1-H198Q and D1-H198A, have been previously constructed in Thermosynechococcus elongatus with the aim at modifying the redox potential of the P680•+/P680 couple by changing the axial ligand of PD1, one the two chlorophylls of the Photosystem II primary electron donor [Sugiura et al., Biochim. Biophys. Acta 1777 (2008) 331-342]. However, after the publication of this work it was pointed out to us by Dr. Eberhard Schlodder (Technische Universität Berlin) that in both mutants the pheophytin band shift which is observed upon the reduction of QA was centered at 544nm instead of 547nm, clearly showing that the D1 protein corresponded to PsbA1 whereas the mutants were supposedly constructed in the psbA3 gene so that the conclusions in our previous paper were wrong. O2 evolving mutants have been therefore reconstructed and their analyze shows that they are now correct mutants which are suitable for further studies. Indeed, the D1-H198Q mutation downshifted by ≈3nm the P680•+/P680 difference absorption spectrum in the Soret region and increased the redox potential of the P680•+/P680 couple and the D1-H198A mutation decreased the redox potential of the P680•+/P680 couple all these effects being comparable to those which were observed in Synechocystis sp. PCC 6803 [Diner et al., Biochemistry 40 (2001) 9265-9281 and Merry et al. Biochemistry 37 (1998) 17,439-17,447]. We apologize for having presented wrong data and wrong conclusions in our earlier publication.

2.
Biochim Biophys Acta ; 1837(12): 1922-1931, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25193561

RESUMO

The main cofactors of Photosystem II (PSII) are borne by the D1 and D2 subunits. In the thermophilic cyanobacterium Thermosynechococcus elongatus, three psbA genes encoding D1 are found in the genome. Among the 344 residues constituting the mature form of D1, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2, and 27 between PsbA2 and PsbA3. In a previous study (Sugiura et al., J. Biol. Chem. 287 (2012), 13336-13347) we found that the oxidation kinetics and spectroscopic properties of TyrZ were altered in PsbA2-PSII when compared to PsbA(1/3)-PSII. The comparison of the different amino acid sequences identified the residues Cys144 and Pro173 found in PsbA1 and PsbA3, as being substituted in PsbA2 by Pro144 and Met173, and thus possible candidates accounting for the changes in the geometry and/or the environment of the TyrZ/His190 phenol/imidizol motif. Indeed, these amino acids are located upstream of the α-helix bearing TyrZ and between the two α-helices bearing TyrZ and its hydrogen-bonded partner, D1/His190. Here, site-directed mutants of PSII, PsbA3/Pro173Met and PsbA2/Met173Pro, were analyzed using X- and W-band EPR and UV-visible time-resolved absorption spectroscopy. The Pro173Met substitution in PsbA2-PSII versus PsbA3-PSII is shown to be the main structural determinant of the previously described functional differences between PsbA2-PSII and PsbA3-PSII. In PsbA2-PSII and PsbA3/Pro173Met-PSII, we found that the oxidation of TyrZ by P680+● was specifically slowed during the transition between S-states associated with proton release. We thus propose that the increase of the electrostatic charge of the Mn4CaO5 cluster in the S2 and S3 states could weaken the strength of the H-bond interaction between TyrZ● and D1/His190 in PsbA2 versus PsbA3 and/or induce structural modification(s) of the water molecules network around TyrZ.


Assuntos
Aminoácidos/genética , Proteínas de Bactérias/genética , Histidina/genética , Complexo de Proteína do Fotossistema II/genética , Tirosina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cianobactérias/química , Cianobactérias/genética , Cianobactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Histidina/química , Histidina/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Espectrofotometria , Tirosina/química , Tirosina/metabolismo
3.
J Vet Med Sci ; 72(12): 1531-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20657161

RESUMO

Adult rat dorsal root ganglion (DRG) neurons cultured in the presence of 100 ng/ml NGF show spontaneous action potentials and fluctuations in their cytosolic Ca(2+) concentrations ([Ca(2+)](i)). In the present study, the Ca(2+) sources of the [Ca(2+)](i) fluctuations and the types of neurons whose excitability was affected by NGF were examined. In the subpopulation of NGF-treated neurons, obvious fluctuations of [Ca(2+)](i) were observed. The [Ca(2+)](i) fluctuations were inhibited by Ca(2+) removal or inhibitors of voltage-gated Ca(2+) channels. Regardless of the treatment with NGF, about half of the neurons responded to capsaicin and 10% of the neurons responded to icilin, and almost all icilin-responding neurons also responded to capsaicin. Fluctuations of [Ca(2+)](i) with large amplitudes were observed in 12 out of 131 NGF-treated neurons. Among these 12 neurons, 10 neurons responded to both capsaicin and icilin. The degree of the [Ca(2+)](i) fluctuations in the NGF-treated neurons responding to both capsaicin and icilin was significantly larger than in other neurons. These results suggest that neurons expressing both capsaicin- and icilin-sensitive TRP channels are susceptible to NGF and become hyperexcitable and that Ca(2+) influx through voltage-gated Ca(2+) channels is the major source contributing to the [Ca(2+)](i) fluctuations. Since such DRG neurons could play a physiological role as nociceptors, the NGF-induced spontaneous activity of DRG neurons may be the underlying mechanism of neuropathic pain.


Assuntos
Cálcio/metabolismo , Gânglios Espinais/citologia , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Pirimidinonas/farmacologia , Animais , Capsaicina/farmacologia , Células Cultivadas , Esquema de Medicação , Masculino , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
4.
Cell Calcium ; 45(3): 209-15, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19027951

RESUMO

NGF is a candidate for a pathogenic mediator of neuropathic pain after nerve injury and inflammation. It has been reported that adult rat dorsal root ganglion (DRG) neurons cultured in the presence of NGF at 100 ng/ml generate spontaneous action potentials. However, it is unclear what types of subpopulation of DRG neurons are affected by NGF and how the intracellular Ca(2+) concentration ([Ca(2+)](i)) changes in such neurons. To elucidate these points, we measured [Ca(2+)](i) in adult rat DRG neurons cultured with or without NGF. [Ca(2+)](i) fluctuated spontaneously in the absence of any stimuli in subpopulations of NGF-treated neurons, but such fluctuations were not observed in all NGF-untreated neurons. NGF-induced [Ca(2+)](i) fluctuations were inhibited by decreases in extracellular Na(+) concentration, TTX and Lidocaine, suggesting that spontaneous action potentials provoked the [Ca(2+)](i) fluctuation. NGF-induced [Ca(2+)](i) fluctuation was observed in small and medium sized neurons and in Capsaicin-sensitive neurons more frequently than in Capsaicin-non-responsive neurons. These results suggest that NGF acted on the nociceptive neurons and made them hyperexcitable to generate spontaneous action potentials and spontaneous [Ca(2+)](i) fluctuations. The [Ca(2+)](i) fluctuation induced by NGF may play some role in the regulation of membrane excitability of nociceptive sensory neurons and neuropathic pain.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Gânglios Espinais/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Fator de Crescimento Neural/farmacologia , Nociceptores/metabolismo , Animais , Capsaicina/farmacologia , Tamanho Celular , Gânglios Espinais/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Nociceptores/efeitos dos fármacos , Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...