Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 21(7): 779-81, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16038494

RESUMO

The Li 1s XPS (X-ray Photoelectron Spectroscopy) spectra of LiMn2O4, which is one of the major positive-electrode materials in lithium-ion rechargeable batteries, and MnO2 as a reference material, were measured by a laboratory-type XPS spectrometer. The Li 1s peak was not observed in the spectra excited by the Mg Kalpha line (1253.6 eV), because the Li 1s peak overlapped the background of the Mn 3p peak of LiMn2O4. The photoionization cross section of Mn 3p was larger than that of Li 1s for Mg Kalpha excitation. Therefore, the XPS measurement of LiMn2O4 by soft X-ray synchrotron excitation was carried out at beamline BL-7B on NewSUBARU synchrotron facility. Excitation energies of 110, 120, 130, 140, 150 and 151.4 eV were selected. The Li 1s peak was clearly observed in these XPS spectra. In order to investigate the excitation energy dependence, the area ratio of the Li 1s and Mn 3p peaks in the XPS spectra was plotted against the excitation energy. As a result, when the excitation energy was 110 eV, the area ratio had the maximum value.

2.
J Biomed Mater Res ; 62(4): 579-86, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12221706

RESUMO

Two kinds of methods combining a biomimetic process and transcription of resist pattern were conducted to form an apatite micropattern. For method 1, apatite nuclei were formed on a resist pattern printed substrate by setting it in contact with CaO-SiO(2)-based glass in a simulated body fluid (SBF) with inorganic ion concentrations nearly equal to those of human blood plasma. Next, apatite was grown from the nuclei by soaking the substrate in an aqueous solution with ion concentrations 1.5 times those of SBF (1.5 SBF). Then, the resist material was dissolved off by organic solvent with the apatite just formed on it. Apatite micropattern transcribing the resist pattern was obtained. For method 2, apatite nuclei were formed on a resist pattern printed substrate by setting it in contact with CaO-SiO(2)-based glass in SBF. Next, the resist material was dissolved off with the apatite nuclei just formed on it. Then, the substrate was soaked in 1.5 SBF to grow the remaining nuclei and an apatite micropattern transcribing the resist pattern was obtained. For both methods, minute apatite patterns with various shapes as straight lines, bending lines, and blocks were clearly formed. The minimum line width of the obtained pattern was 2 microm. These methods are promising for producing multifunctional materials with bioaffinity.


Assuntos
Apatitas/química , Materiais Biocompatíveis/química , Líquidos Corporais/química , Compostos de Cálcio/química , Vidro/química , Humanos , Íons/química , Microscopia Eletrônica de Varredura , Óxidos/química , Dióxido de Silício/química , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...