Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514764

RESUMO

The popularity of bicycles as a mode of transportation has been steadily increasing. However, concerns about cyclist safety persist due to a need for comprehensive data. This data scarcity hinders accurate assessment of bicycle safety and identification of factors that contribute to the occurrence and severity of bicycle collisions in urban environments. This paper presents the development of the BSafe-360, a novel multi-sensor device designed as a data acquisition system (DAS) for collecting naturalistic cycling data, which provides a high granularity of cyclist behavior and interactions with other road users. For the hardware component, the BSafe-360 utilizes a Raspberry Pi microcomputer, a Global Positioning System (GPS) antenna and receiver, two ultrasonic sensors, an inertial measurement unit (IMU), and a real-time clock (RTC), which are all housed within a customized bicycle phone case. To handle the software aspect, BSafe-360 has two Python scripts that manage data processing and storage in both local and online databases. To demonstrate the capabilities of the device, we conducted a proof of concept experiment, collecting data for seven hours. In addition to utilizing the BSafe-360, we included data from CCTV and weather information in the data analysis step for verifying the occurrence of critical events, ensuring comprehensive coverage of all relevant information. The combination of sensors within a single device enables the collection of crucial data for bicycle safety studies, including bicycle trajectory, lateral passing distance (LPD), and cyclist behavior. Our findings show that the BSafe-360 is a promising tool for collecting naturalistic cycling data, facilitating a deeper understanding of bicycle safety and improving it. By effectively improving bicycle safety, numerous benefits can be realized, including the potential to reduce bicycle injuries and fatalities to zero in the near future.

2.
Transp Res Rec ; 2677(4): 219-238, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37153201

RESUMO

During the outbreak of COVID-19, people's reliance on social media for pandemic-related information exchange, daily communications, and online professional interactions increased because of self-isolation and lockdown implementation. Most of the published research addresses the performance of nonpharmaceutical interventions (NPIs) and measures on the issues impacted by COVID-19, such as health, education, and public safety; however, not much is known about the interplay between social media use and travel behaviors. This study aims to determine the effect of social media on human mobility before and after the COVID-19 outbreak, and its impact on personal vehicle and public transit use in New York City (NYC). Apple mobility trends and Twitter data are used as two data sources. The results indicate that Twitter volume and mobility trend correlations are negative for both driving and transit categories in general, especially at the beginning of the COVID-19 outbreak in NYC. A significant time lag (13 days) between the online communication rise and mobility drop can be observed, thereby providing evidence of social networks taking quicker reactions to the pandemic than the transportation system. In addition, social media and government policies had different impacts on vehicular traffic and public transit ridership during the pandemic with varied performance. This study provides insights on the complex influence of both anti-pandemic measures and user-generated content, namely social media, on people's travel decisions during pandemics. The empirical evidence can help decision-makers formulate timely emergency responses, prepare targeted traffic intervention policies, and conduct risk management in similar outbreaks in the future.

3.
Sensors (Basel) ; 23(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050773

RESUMO

Access to high-quality data is an important barrier in the digital analysis of urban settings, including applications within computer vision and urban design. Diverse forms of data collected from sensors in areas of high activity in the urban environment, particularly at street intersections, are valuable resources for researchers interpreting the dynamics between vehicles, pedestrians, and the built environment. In this paper, we present a high-resolution audio, video, and LiDAR dataset of three urban intersections in Brooklyn, New York, totaling almost 8 unique hours. The data were collected with custom Reconfigurable Environmental Intelligence Platform (REIP) sensors that were designed with the ability to accurately synchronize multiple video and audio inputs. The resulting data are novel in that they are inclusively multimodal, multi-angular, high-resolution, and synchronized. We demonstrate four ways the data could be utilized - (1) to discover and locate occluded objects using multiple sensors and modalities, (2) to associate audio events with their respective visual representations using both video and audio modes, (3) to track the amount of each type of object in a scene over time, and (4) to measure pedestrian speed using multiple synchronized camera views. In addition to these use cases, our data are available for other researchers to carry out analyses related to applying machine learning to understanding the urban environment (in which existing datasets may be inadequate), such as pedestrian-vehicle interaction modeling and pedestrian attribute recognition. Such analyses can help inform decisions made in the context of urban sensing and smart cities, including accessibility-aware urban design and Vision Zero initiatives.

4.
Transp Res Part A Policy Pract ; 172: 103669, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37020641

RESUMO

Non-pharmacological interventions (NPI) such as social distancing and lockdown are essential in preventing and controlling emerging pandemic outbreaks. Many countries worldwide implemented lockdowns during the COVID-19 outbreaks. However, due to the lack of prior experience and knowledge about the pandemic, it is challenging to deal with short-term polices decision-making due to the highly stochastic and dynamic nature of the COVID-19. Thus, there is a need for the exploration of policy decision analysis to help agencies to adjust their current policies and adopt quickly. In this study, an analytical methodology is developed to analysis urban transport policy response for pandemic control based on social media data. Compared to traditional surveys or interviews, social media can provide timely data based on the feedback from public in terms of public demands, opinions, and acceptance of policy implementations. In particular, a sentiment-aware pre-trained language model is fine-tuned for sentiment analysis of policy. The Latent Dirichlet Allocation (LDA) model is used to classify documents, e.g., posts collected from social media, into specific topics in an unsupervised manner. Then, entropy weights method (EWM) is used to extract public policy demands based on the classified topics. Meanwhile, a Jaccard distance-based approach is proposed to conduct the response analysis of policy adjustments. A retrospective analysis of transport policies during the COVID-19 pandemic in Wuhan, China is presented using the developed methodology. The results show that the developed policymaking support methodology can be an effective tool to evaluate the acceptance of anti-pandemic policies from the public's perspective, to assess the balance between policies and people's demands, and to further perform the response analysis of a series of policy adjustments based on online feedback.

5.
Transp Res Interdiscip Perspect ; 19: 100815, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37020705

RESUMO

The COVID-19 pandemic has greatly impacted lifestyles and travel patterns, revealing existing societal and transportation gaps and introducing new challenges. In the context of an aging population, this study investigated how the travel behaviors of older adults (aged 60+) in New York City were affected by COVID-19, using an online survey and analyzing younger adult (aged 18-59) data for comparative analysis. The purpose of the study is to understand the pandemic's effects on older adults' travel purpose and frequency, challenges faced during essential trips, and to identify potential policies to enhance their mobility during future crises. Descriptive analysis and Wilcoxon signed-rank tests were used to summarize the changes in employment status, trip purposes, transportation mode usage, and attitude regarding transportation systems before and during the outbreak and after the travel restrictions were lifted. A Natural Language Processing model, Gibbs Sampling Dirichlet Multinomial Mixture, was adopted to open-ended questions due to its advantage in extracting information from short text. The findings show differences between older and younger adults in telework and increased essential-purpose trips (e.g., medical visits) for older adults. The pandemic increased older adults' concern about health, safety, comfort, prices when choosing travel mode, leading to reduced transit use and walking, increased driving, and limited bike use. To reduce travel burdens and maintain older adults' employment, targeted programs improving digital skills (telework, telehealth, telemedicine) are recommended. Additionally, safe, affordable, and accessible transportation alternatives are necessary to ensure mobility and essential trips for older adults, along with facilitation of walkable communities.

6.
Accid Anal Prev ; 179: 106878, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334543

RESUMO

Proper calibration process is of considerable importance for traffic safety evaluations using simulation models. Allowing for a pure with and without comparison under identical circumstances that is not directly testable in the field, microsimulation-based approach has drawn considerable attention for the performance evaluation of emerging technologies, such as connected vehicle (CV) safety applications. Different from the traditional approaches to evaluate mobility impacts, safety evaluations of such applications demand the simulation models to be well calibrated to match real-world safety conditions. This paper proposes a novel calibration framework which combines traffic conflict techniques and multi-objective stochastic optimization so that the operational and safety measures can be calibrated simultaneously. The conflict distribution of different severity levels categorized by time-to-collision (TTC) is applied as the safety performance measure. Simultaneous perturbation stochastic approximation (SPSA) algorithm, which can efficiently approximate the gradient of the multi-objective stochastic loss function, is used for model parameters optimization that minimizes the total simulation error of both operational and safety performance measures. The proposed calibration methodology is implemented using an open-source software SUMO on a simulation network of the Flatbush Avenue corridor in Brooklyn, NY. 17 key parameters are calibrated using the SPSA algorithm and are compared with the real-world traffic conflicts extracted using vehicle trajectories from 14 h' high-resolution aerial and traffic surveillance videos. Representative days are identified to create variation envelopes for performance measures. Four acceptability criteria, including control for time-variant outliers and inliers, bounded dynamic absolute and system errors are adopted for results analysis. The results show that the calibrated parameters can significantly improve the performance of the simulation model to represent real-world safety conditions (i.e., traffic conflicts) as well as operational conditions. The case study also demonstrates the usefulness of aerial imagery and the applicability of the proposed model calibration framework, so the calibrated model can be used to evaluate the safety benefits of CV applications more accurately.


Assuntos
Acidentes de Trânsito , Humanos , Acidentes de Trânsito/prevenção & controle
7.
Accid Anal Prev ; 173: 106715, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35623304

RESUMO

With the advance of intelligent transportation system technologies, contributing factors to crashes can be obtained in real time. Analyzing these factors can be critical in improving traffic safety. Despite many crash models having been successfully developed for safety analytics, most models associate crash observations and contributing factors at the aggregate level, resulting in potential information loss. This study proposes an efficient Gaussian process modulated renewal process model for safety analytics that does not suffer from information loss due to data aggregations. The proposed model can infer crash intensities in the continuous-time dimension so that they can be better associated with contributing factors that change over time. Moreover, the model can infer non-homogeneous intensities by relaxing the independent and identically distributed (i.i.d.) exponential assumption of the crash intervals. To demonstrate the validity and advantages of this proposed model, an empirical study examining the impacts of the COVID-19 pandemic on traffic safety at six interstate highway sections is performed. The accuracy of our proposed renewal model is verified by comparing the areas under the curve (AUC) of the inferred crash intensity function with the actual crash counts. Residual box plot shows that our proposed models have lower biases and variances compared with Poisson and Negative binomial models. Counterfactual crash intensities are then predicted conditioned on exogenous variables at the crash time. Time-varying safety impacts such as bimodal, unimodal, and parabolic patterns are observed at the selected highways. The case study shows the proposed model enables safety analytics at a granular level and provides a more detailed insight into the time-varying safety risk in a changing environment.


Assuntos
Condução de Veículo , COVID-19 , Acidentes de Trânsito/prevenção & controle , Humanos , Modelos Estatísticos , Pandemias , Segurança
8.
Sensors (Basel) ; 22(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632217

RESUMO

Sensor networks have dynamically expanded our ability to monitor and study the world. Their presence and need keep increasing, and new hardware configurations expand the range of physical stimuli that can be accurately recorded. Sensors are also no longer simply recording the data, they process it and transform into something useful before uploading to the cloud. However, building sensor networks is costly and very time consuming. It is difficult to build upon other people's work and there are only a few open-source solutions for integrating different devices and sensing modalities. We introduce REIP, a Reconfigurable Environmental Intelligence Platform for fast sensor network prototyping. REIP's first and most central tool, implemented in this work, is an open-source software framework, an SDK, with a flexible modular API for data collection and analysis using multiple sensing modalities. REIP is developed with the aim of being user-friendly, device-agnostic, and easily extensible, allowing for fast prototyping of heterogeneous sensor networks. Furthermore, our software framework is implemented in Python to reduce the entrance barrier for future contributions. We demonstrate the potential and versatility of REIP in real world applications, along with performance studies and benchmark REIP SDK against similar systems.


Assuntos
Inteligência , Software , Humanos
9.
IEEE Trans Cybern ; 52(6): 5267-5277, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33170792

RESUMO

Through vehicle-to-vehicle (V2V) communication, both human-driven and autonomous vehicles can actively exchange data, such as velocities and bumper-to-bumper distances. Employing the shared data, control laws with improved performance can be designed for connected and autonomous vehicles (CAVs). In this article, taking into account human-vehicle interaction and heterogeneous driver behavior, an adaptive optimal control design method is proposed for a platoon mixed with multiple preceding human-driven vehicles and one CAV at the tail. It is shown that by using reinforcement learning and adaptive dynamic programming techniques, a near-optimal controller can be learned from real-time data for the CAV with V2V communications, but without the precise knowledge of the accurate car-following parameters of any driver in the platoon. The proposed method allows the CAV controller to adapt to different platoon dynamics caused by the unknown and heterogeneous driver-dependent parameters. To improve the safety performance during the learning process, our off-policy learning algorithm can leverage both the historical data and the data collected in real time, which leads to considerably reduced learning time duration. The effectiveness and efficiency of our proposed method is demonstrated by rigorous proofs and microscopic traffic simulations.


Assuntos
Condução de Veículo , Acidentes de Trânsito/prevenção & controle , Algoritmos , Humanos , Tempo de Reação , Segurança
10.
Accid Anal Prev ; 163: 106446, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34666264

RESUMO

Safety evaluation of signalized intersections is often conducted by developing statistical and data-driven methods based on data aggregated at certain temporal and spatial levels (e.g., yearly, hourly, or per signal cycle; intersection or approach leg). However, such aggregations are subject to a major simplification that masks the underlying spatio-temporal safety risk patterns within the data aggregation levels. Consequently, high-resolution analysis such as safety risk within signal cycles and at traffic movement level cannot be performed. This study contributes to the literature by proposing a new functional data analysis (FDA) approach for a novel characterization of safety risk patterns of signalized intersections. Functional data smoothing methods that can mitigate overfitting and account for the nonnegative characteristics of safety risk are proposed to model the time series of safety risk within signal cycles at the traffic movement level. Functional analysis of variance method (FANOVA) that can compare the group level differences of functional curves is used to test differences of safety risk functions among different traffic movements. A typical signalized intersection with representative signal types and channelizations is selected as the study location and approximately 1-hour traffic video data recorded by an unmanned aerial vehicle are used to extract traffic conflicts. New movement-level safety risk patterns are characterized based on the safety risk functions that can reveal the temporal distribution of risk within signal cycles. Most of the tested traffic movements have significantly distinct functional risk patterns according to the FANOVA results while risk patterns for most of the traffic movements cannot be differentiated based on the data aggregated at the cycle and approach levels. The proposed functional approach has the potential to be used for facilitating proactive safety management, calibrating microsimulation models for safety evaluation, and optimizing signal timing while considering traffic safety at more disaggregated levels.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Acidentes de Trânsito/prevenção & controle , Planejamento Ambiental , Humanos , Segurança , Gestão da Segurança
11.
Transp Res Part A Policy Pract ; 153: 151-170, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34566278

RESUMO

COVID-19 has raised new challenges for transportation in the post-pandemic era. The social distancing requirement, with the aim of reducing contact risk in public transit, could exacerbate traffic congestion and emissions. We propose a simulation tool to evaluate the trade-offs between traffic congestion, emissions, and policies impacting travel behavior to mitigate the spread of COVID-19 including social distancing and working from home. Open-source agent-based simulation models are used to evaluate the transportation system usage for the case study of New York City. A Post Processing Software for Air Quality (PPS-AQ) estimation is used to evaluate the air quality impacts. Finally, system-wide contact exposure on the subway is estimated from the traffic simulation output. The social distancing requirement in public transit is found to be effective in reducing contact exposure, but it has negative congestion and emission impacts on Manhattan and neighborhoods at transit and commercial hubs. While telework can reduce congestion and emissions citywide, in Manhattan the negative impacts are higher due to behavioral inertia and social distancing. The findings suggest that contact exposure to COVID-19 on subways is relatively low, especially if social distancing practices are followed. The proposed integrated traffic simulation models and air quality estimation model can help policymakers evaluate the impact of policies on traffic congestion and emissions as well as identifying hot spots, both temporally and spatially.

12.
Accid Anal Prev ; 152: 105971, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33508696

RESUMO

Most existing efforts to assess safety performance require sufficient crash data, which generally takes a few years to collect and suffers from certain limitations (such as long data collection time, under-reporting issue and so on). Alternatively, the surrogate safety measure (SSMs) based approach that can assess traffic safety by capturing the more frequent "near-crash" situations have been developed, but it is criticized for the potential sampling and measurement errors. This study proposes a new safety performance measure-Risk Status (RS), by fusing crash data and SSMs. Real-world connected vehicle data collected in the Safety Pilot Model Deployment (SPMD) project in Ann Arbor, Michigan is used to extract SSMs. With RS treated as a latent variable, a structural equation model with conditional autoregressive spatial effect and corridor-level random parameters is developed to model the interrelationship among RS, crash frequency, risk identified by SSMs, and contributing factors. The modeling results confirm the proposed interrelationship and the necessity to account for both spatial autocorrelation and unobserved heterogeneity. RS can integrate both crash frequency and SSMs together while controlling for observed and unobserved factors. RS is found to be a more reliable criterion for safety assessment in an implementation case of hotspot identification.


Assuntos
Acidentes de Trânsito , Modelos Estatísticos , Acidentes de Trânsito/prevenção & controle , Teorema de Bayes , Humanos , Michigan , Segurança
13.
J Transp Health ; 21: 101032, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36567866

RESUMO

Introduction: The rapidly evolving COVID-19 pandemic has dramatically reshaped urban travel patterns. In this research, we explore the relationship between "social distancing," a concept that has gained worldwide familiarity, and urban mobility during the pandemic. Understanding social distancing behavior will allow urban planners and engineers to better understand the new norm of urban mobility amid the pandemic, and what patterns might hold for individual mobility post-pandemic or in the event of a future pandemic. Methods: There are still few efforts to obtain precise information on social distancing patterns of pedestrians in urban environments. This is largely attributed to numerous burdens in safely deploying any effective field data collection approaches during the crisis. This paper aims to fill that gap by developing a data-driven analytical framework that leverages existing public video data sources and advanced computer vision techniques to monitor the evolution of social distancing patterns in urban areas. Specifically, the proposed framework develops a deep-learning approach with a pre-trained convolutional neural network to mine the massive amount of public video data captured in urban areas. Real-time traffic camera data collected in New York City (NYC) was used as a case study to demonstrate the feasibility and validity of using the proposed approach to analyze pedestrian social distancing patterns. Results: The results show that microscopic pedestrian social distancing patterns can be quantified by using a generalized real-distance approximation method. The estimated distance between individuals can be compared to social distancing guidelines to evaluate policy compliance and effectiveness during a pandemic. Quantifying social distancing adherence will provide decision-makers with a better understanding of prevailing social contact challenges. It also provides insights into the development of response strategies and plans for phased reopening for similar future scenarios.

14.
Transp Res Part A Policy Pract ; 145: 269-283, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36569966

RESUMO

The unprecedented challenges caused by the COVID-19 pandemic demand timely action. However, due to the complex nature of policy making, a lag may exist between the time a problem is recognized and the time a policy has its impact on a system. To understand this lag and to expedite decision making, this study proposes a change point detection framework using likelihood ratio, regression structure and a Bayesian change point detection method. The objective is to quantify the time lag effect reflected in transportation systems when authorities take action in response to the COVID-19 pandemic. Using travel patterns as an indicator of policy effectiveness, the length of policy lag and magnitude of policy impacts on the road system, mass transit, and micromobility are investigated through the case studies of New York City (NYC), and Seattle-two U.S. cities significantly affected by COVID-19. The quantitative findings show that the National declaration of emergency had no policy lag while stay-at-home and reopening policies had a lead effect on mobility. The magnitude of impact largely depended on the land use and sociodemographic characteristics of the area, as well as the type of transportation system.

15.
Accid Anal Prev ; 132: 105286, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31487665

RESUMO

Safety performance functions (SPFs) are generally used to relate exposure to the expected number of crashes aggregated over a long time (e.g. a year) by holding all other risk factors constant, and to identify hotspots that have excessive crashes regardless of different time periods. However, it is highly likely that the relationships of exposure, risk factors and crash occurrence can vary across different times of day. This study aims to establish time-dependent SPFs for urban roads by using large-scale dangerous driving event data captured by smartphones in different times of day. Multivariate conditional autoregressive (MVCAR) models are developed to jointly account for spatial and temporal dependence of crash observations. Results of two-sample Kolmogorov-Smirnov tests affirm the heterogeneity of the safety effects of dangerous driving events in different time periods. Time-dependent hotspots are identified using potential for safety improvement (PSI) metric. The assumption here is that due to the change of traffic conditions and environment across different times of day, safety hotspots for different time periods should be different from each other. According to the results of Wilcoxon signed-rank tests, hotspots identified by times of day are found to be mostly different from each other. The findings of this study provide insights into temporal effects of risk factors and can support the development of time-dependent safety countermeasures. Besides, this study also shows the potential of leveraging anonymized and aggregated dangerous driving data to assess traffic safety issues.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Condução de Veículo/estatística & dados numéricos , Coleta de Dados/métodos , Smartphone , Acidentes de Trânsito/prevenção & controle , Ambiente Construído , Humanos , Fatores de Risco , Segurança
16.
Accid Anal Prev ; 125: 311-319, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29983165

RESUMO

Traditional methods for the identification of high-risk locations rely heavily on historical crash data. Rich information generated from connected vehicles could be used to obtain surrogate safety measures (SSMs) for risk identification. Conventional SSMs such as time to collision (TTC) neglect the potential risk of car-following scenarios in which the following vehicle's speed is slightly less than or equal to the leading vehicle's but the spacing between two vehicles is relatively small that a slight disturbance would yield collision risk. To address this limitation, this study proposes time to collision with disturbance (TTCD) for risk identification. By imposing a hypothetical disturbance, TTCD can capture rear-end conflict risks in various car following scenarios, even when the leading vehicle has a higher speed. Real-world connected vehicle pilot test data collected in Ann Arbor, Michigan is used in this study. A detailed procedure of cleaning and processing the connected vehicle data is presented. Results show that risk rate identified by TTCD can achieve a higher Pearson's correlation coefficient with rear-end crash rate than other traditional SSMs. We show that high-risk locations identified by connected vehicle data from a relatively shorter time period are similar to the ones identified by using the historical crash data. The proposed method can substantially reduce the data collection time, compared with traditional safety analysis that generally requires more than three years to get sufficient crash data. The connected vehicle data has thus shown the potential to be used to develop proactive safety solutions and the risk factors can be eliminated in a timely manner.


Assuntos
Acidentes de Trânsito/prevenção & controle , Coleta de Dados/métodos , Medição de Risco/métodos , Condução de Veículo/estatística & dados numéricos , Ambiente Construído , Humanos , Michigan , Fatores de Risco , Segurança
17.
Accid Anal Prev ; 122: 189-198, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30388574

RESUMO

Conventional safety models rely on the assumption of independence of crash data, which is frequently violated. This study develops a novel multivariate conditional autoregressive (MVCAR) model to account for the spatial autocorrelation of neighboring sites and the inherent correlation across different crash types. Manhattan, which is the most densely populated urban area of New York City, is used as the study area. Census tracts are used as the basic geographic units to capture crash, transportation, land use, and demo-economic data. The specification of the proposed multivariate model allows for jointly modeling counts of various crash types that are classified according to injury severity. Results of Moran's I tests show the ability of the MVCAR model to capture the multivariate spatial autocorrelation among different crash types. The MVCAR model is found to outperform the others by presenting the lowest deviance information criterion (DIC) value. It is also found that the unobserved heterogeneity was mostly attributed to spatial factors instead of non-spatial ones and there is a strong shared geographical pattern of risk among different crash types.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Escala de Gravidade do Ferimento , Análise Espacial , Teorema de Bayes , Humanos , Modelos Estatísticos , Cidade de Nova Iorque/epidemiologia , Características de Residência/estatística & dados numéricos , Ferimentos e Lesões/epidemiologia
18.
Risk Anal ; 39(6): 1342-1357, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30549463

RESUMO

The widely used empirical Bayes (EB) and full Bayes (FB) methods for before-after safety assessment are sometimes limited because of the extensive data needs from additional reference sites. To address this issue, this study proposes a novel before-after safety evaluation methodology based on survival analysis and longitudinal data as an alternative to the EB/FB method. A Bayesian survival analysis (SARE) model with a random effect term to address the unobserved heterogeneity across sites is developed. The proposed survival analysis method is validated through a simulation study before its application. Subsequently, the SARE model is developed in a case study to evaluate the safety effectiveness of a recent red-light-running photo enforcement program in New Jersey. As demonstrated in the simulation and the case study, the survival analysis can provide valid estimates using only data from treated sites, and thus its results will not be affected by the selection of defective or insufficient reference sites. In addition, the proposed approach can take into account the censored data generated due to the transition from the before period to the after period, which has not been previously explored in the literature. Using individual crashes as units of analysis, survival analysis can incorporate longitudinal covariates such as the traffic volume and weather variation, and thus can explicitly account for the potential temporal heterogeneity.


Assuntos
Acidentes de Trânsito/prevenção & controle , Acidentes de Trânsito/estatística & dados numéricos , Medição de Risco/métodos , Segurança , Análise de Sobrevida , Algoritmos , Condução de Veículo , Teorema de Bayes , Simulação por Computador , Coleta de Dados , Humanos , New Jersey
19.
Accid Anal Prev ; 117: 40-54, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29653308

RESUMO

Secondary crashes (SCs) or crashes that occur within the boundaries of the impact area of prior, primary crashes are one of the incident types that frequently affect highway traffic operations and safety. Existing studies have made great efforts to explore the underlying mechanisms of SCs and relevant methodologies have been evolving over the last two decades concerning the identification, modeling, and prevention of these crashes. So far there is a lack of a detailed examination on the progress, lessons, and potential opportunities regarding existing achievements in SC-related studies. This paper provides a comprehensive investigation of the state-of-the-art approaches; examines their strengths and weaknesses; and provides guidance in exploiting new directions in SC-related research. It aims to support researchers and practitioners in understanding well-established approaches so as to further explore the frontiers. Published studies focused on SCs since 1997 have been identified, reviewed, and summarized. Key issues concentrated on the following aspects are discussed: (i) static/dynamic approaches to identify SCs; (ii) parametric/non-parametric models to analyze SC risk, and (iii) deployable countermeasures to prevent SCs. Based on the examined issues, needs, and challenges, this paper further provides insights into potential opportunities such as: (a) fusing data from multiple sources for SC identification, (b) using advanced learning algorithms for real-time SC analysis, and (c) deploying connected vehicles for SC prevention in future research. This paper contributes to the research community by providing a one-stop reference for research on secondary crashes.


Assuntos
Acidentes de Trânsito/prevenção & controle , Meio Ambiente , Veículos Automotores , Segurança , Acidentes de Trânsito/classificação , Algoritmos , Coleta de Dados , Socorristas , Humanos , Projetos de Pesquisa , Fatores de Risco , Prevenção Secundária
20.
Traffic Inj Prev ; 19(2): 189-194, 2018 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-29058459

RESUMO

OBJECTIVE: This study aims to investigate the contributing factors to secondary collisions and the effects of secondary collisions on injury severity levels. Manhattan, which is the most densely populated urban area of New York City, is used as a case study. In Manhattan, about 7.5% of crash events become involved with secondary collisions and as high as 9.3% of those secondary collisions lead to incapacitating and fatal injuries. METHODS: Structural equation models (SEMs) are proposed to jointly model the presence of secondary collisions and injury severity levels and adjust for the endogeneity effects. The structural relationship among secondary collisions, injury severity, and contributing factors such as speeding, alcohol, fatigue, brake defects, limited view, and rain are fully explored using SEMs. In addition, to assess the temporal effects, we use time as a moderator in the proposed SEM framework. RESULTS: Due to its better performance compared with other models, the SEM with no constraint is used to investigate the contributing factors to secondary collisions. Thirteen explanatory variables are found to contribute to the presence of secondary collisions, including alcohol, drugs, inattention, inexperience, sleep, control disregarded, speeding, fatigue, defective brakes, pedestrian involved, defective pavement, limited view, and rain. Regarding the temporal effects, results indicate that it is more likely to sustain secondary collisions and severe injuries at night. CONCLUSIONS: This study fully investigates the contributing factors to secondary collisions and estimates the safety effects of secondary collisions after adjusting for the endogeneity effects and shows the advantage of using SEMs in exploring the structural relationship between risk factors and safety indicators. Understanding the causes and impacts of secondary collisions can help transportation agencies and automobile manufacturers develop effective injury prevention countermeasures.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Índices de Gravidade do Trauma , Ferimentos e Lesões/etiologia , Humanos , Modelos Estatísticos , Cidade de Nova Iorque , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...