Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499050

RESUMO

Pollution in cities induces harmful effects on human health, which continuously increases the global demand of gas sensors for air quality control and monitoring. In the same manner, the industrial sector requests new gas sensors for their productive processes. Moreover, the association between exhaled gases and a wide range of diseases or health conditions opens the door for new diagnostic applications. The large number of applications for gas sensors has permitted the development of multiple sensing technologies. Among them, optical fiber gas sensors enable their utilization in remote locations, confined spaces or hostile environments as well as corrosive or explosive atmospheres. Particularly, Lossy Mode Resonance (LMR)-based optical fiber sensors employ the traditional metal oxides used for gas sensing purposes for the generation of the resonances. Some research has been conducted on the development of LMR-based optical fiber gas sensors; however, they have not been fully exploited yet and offer optimal possibilities for improvement. This review gives the reader a complete overview of the works focused on the utilization of LMR-based optical fiber sensors for gas sensing applications, summarizing the materials used for the development of these sensors as well as the fabrication procedures and the performance of these devices.

2.
Sensors (Basel) ; 20(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244678

RESUMO

Lossy mode resonance based sensors have been extensively studied in recent years. The versatility of the lossy mode resonance phenomenon has led to the development of sensors based on different configurations that make use of a wide range of materials. The coating material is one of the key elements in the performance of a refractometer. This review paper intends to provide a global view of the wide range of coating materials available for the development of lossy mode resonance based refractometers.

3.
Opt Express ; 28(1): 288-301, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118958

RESUMO

The generation of lossy mode resonances (LMRs) with a setup based on lateral incidence of light in coverslips is a simple platform that can be used for sensing. Here the versatility of this platform is proved by studying the deposition of different coating materials. The devices were characterized with both SEM and AFM microscopy, as well as ellipsometry, which allowed obtaining the main parameters of the coatings (thickness, refractive index and extinction coefficient) and relating them with the different sensitivities to refractive index attained with each material. In this way it was possible to confirm and complete the basic rules observed with lossy mode resonance based optical fiber sensors towards the design of simpler and more compact applications in domains such as chemical sensors or biosensors.

4.
Sensors (Basel) ; 17(10)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019945

RESUMO

The measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently.

5.
Sci Rep ; 7(1): 10280, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860497

RESUMO

A tin dioxide thin layer has been studied in order to improve the sensitivity of lossy mode resonances (LMR) based sensors. The effects of the thin film thickness and the polarization of light in a SnO2 coated D-shaped single mode optical fiber have been evaluated. The optimization of such parameters in the fabrication of refractometers have led to an unprecedented sensitivity of over one million nanometers per refractive index unit (RIU), which means a sensitivity below 10-9 RIU with a pm resolution detector. This achievement is a milestone for the development of new high sensitivity devices and opens the door to new industrial applications, such as gear oil degradation, or biomedical devices where previous devices could not provide enough sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...