Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioessays ; : e2300206, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769697

RESUMO

Gene discovery reveals new biology, expands the utility of marker-assisted selection, and enables targeted mutagenesis. Still, such discoveries can take over a decade. We present a general strategy, "Agile Genetics," that uses nested, structured populations to overcome common limits on gene resolution. Extensive simulation work on realistic genetic architectures shows that, at population sizes of >5000 samples, single gene-resolution can be achieved using bulk segregant pools. At this scale, read depth and technical replication become major drivers of resolution. Emerging enrichment methods to address coverage are on the horizon; we describe one possibility - iterative depth sequencing (ID-seq). In addition, graph-based pangenomics in experimental populations will continue to maximize accuracy and improve interpretation. Based on this merger of agronomic scale with molecular and bioinformatic innovation, we predict a new age of rapid gene discovery.

3.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37875136

RESUMO

Cultivated peanut or groundnut (Arachis hypogaea L.) is a grain legume grown in many developing countries by smallholder farmers for food, feed, and/or income. The speciation of the cultivated species, that involved polyploidization followed by domestication, greatly reduced its variability at the DNA level. Mobilizing peanut diversity is a prerequisite for any breeding program for overcoming the main constraints that plague production and for increasing yield in farmer fields. In this study, the Groundnut Improvement Network for Africa assembled a collection of 1,049 peanut breeding lines, varieties, and landraces from 9 countries in Africa. The collection was genotyped with the Axiom_Arachis2 48K SNP array and 8,229 polymorphic single nucleotide polymorphism (SNP) markers were used to analyze the genetic structure of this collection and quantify the level of genetic diversity in each breeding program. A supervised model was developed using dapc to unambiguously assign 542, 35, and 172 genotypes to the Spanish, Valencia, and Virginia market types, respectively. Distance-based clustering of the collection showed a clear grouping structure according to subspecies and market types, with 73% of the genotypes classified as fastigiata and 27% as hypogaea subspecies. Using STRUCTURE, the global structuration was confirmed and showed that, at a minimum membership of 0.8, 76% of the varieties that were not assigned by dapc were actually admixed. This was particularly the case of most of the genotype of the Valencia subgroup that exhibited admixed genetic heritage. The results also showed that the geographic origin (i.e. East, Southern, and West Africa) did not strongly explain the genetic structure. The gene diversity managed by each breeding program, measured by the expected heterozygosity, ranged from 0.25 to 0.39, with the Niger breeding program having the lowest diversity mainly because only lines that belong to the fastigiata subspecies are used in this program. Finally, we developed a core collection composed of 300 accessions based on breeding traits and genetic diversity. This collection, which is composed of 205 genotypes of fastigiata subspecies (158 Spanish and 47 Valencia) and 95 genotypes of hypogaea subspecies (all Virginia), improves the genetic diversity of each individual breeding program and is, therefore, a unique resource for allele mining and breeding.


Assuntos
Variação Genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Arachis/genética , África , Estudos de Associação Genética
4.
Plant Genome ; 16(4): e20375, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641460

RESUMO

In addition to the challenge of meeting global demand for food production, there are increasing concerns about food safety and the need to protect consumer health from the negative effects of foodborne allergies. Certain bio-molecules (usually proteins) present in food can act as allergens that trigger unusual immunological reactions, with potentially life-threatening consequences. The relentless working lifestyles of the modern era often incorporate poor eating habits that include readymade prepackaged and processed foods, which contain additives such as peanuts, tree nuts, wheat, and soy-based products, rather than traditional home cooking. Of the predominant allergenic foods (soybean, wheat, fish, peanut, shellfish, tree nuts, eggs, and milk), peanuts (Arachis hypogaea) are the best characterized source of allergens, followed by tree nuts (Juglans regia, Prunus amygdalus, Corylus avellana, Carya illinoinensis, Anacardium occidentale, Pistacia vera, Bertholletia excels), wheat (Triticum aestivum), soybeans (Glycine max), and kidney beans (Phaseolus vulgaris). The prevalence of food allergies has risen significantly in recent years including chance of accidental exposure to such foods. In contrast, the standards of detection, diagnosis, and cure have not kept pace and unfortunately are often suboptimal. In this review, we mainly focus on the prevalence of allergies associated with peanut, tree nuts, wheat, soybean, and kidney bean, highlighting their physiological properties and functions as well as considering research directions for tailoring allergen gene expression. In particular, we discuss how recent advances in molecular breeding, genetic engineering, and genome editing can be used to develop potential low allergen food crops that protect consumer health.


Assuntos
Hipersensibilidade Alimentar , Animais , Nozes , Arachis , Alérgenos , Glycine max , Produtos Agrícolas
5.
Theor Appl Genet ; 136(3): 35, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897398

RESUMO

KEY MESSAGE: We identified markers associated with GRD resistance after screening an Africa-wide core collection across three seasons in Uganda Groundnut is cultivated in several African countries where it is a major source of food, feed and income. One of the major constraints to groundnut production in Africa is groundnut rosette disease (GRD), which is caused by a complex of three agents: groundnut rosette assistor luteovirus, groundnut rosette umbravirus and its satellite RNA. Despite several years of breeding for GRD resistance, the genetics of the disease is not fully understood. The objective of the current study was to use the African core collection to establish the level of genetic variation in their response to GRD, and to map genomic regions responsible for the observed resistance. The African groundnut core genotypes were screened across two GRD hotspot locations in Uganda (Nakabango and Serere) for 3 seasons. The Area Under Disease Progress Curve combined with 7523 high quality SNPs were analyzed to establish marker-trait associations (MTAs). Genome-Wide Association Studies based on Enriched Compressed Mixed Linear Model detected 32 MTAs at Nakabango: 21 on chromosome A04, 10 on B04 and 1 on B08. Two of the significant markers were localised on the exons of a putative TIR-NBS-LRR disease resistance gene on chromosome A04. Our results suggest the likely involvement of major genes in the resistance to GRD but will need to be further validated with more comprehensive phenotypic and genotypic datasets. The markers identified in the current study will be developed into routine assays and validated for future genomics-assisted selection for GRD resistance in groundnut.


Assuntos
Fabaceae , Estudo de Associação Genômica Ampla , Arachis/genética , Melhoramento Vegetal , Fabaceae/genética , RNA Satélite , Resistência à Doença
7.
Sci Rep ; 12(1): 15267, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088406

RESUMO

'Runner' and 'Virginia', the two main market types of Arachis hypogaea subspecies hypogaea, differ in several agricultural and industrial characteristics. One such trait is time to maturation (TTM), contributing to the specific environmental adaptability of each subspecies. However, little is known regarding TTM's genetic and molecular control in peanut in general, and particularly in the Runner/Virginia background. Here, a recombinant inbred line population, originating from a cross between an early-maturing Virginia and a late-maturing Runner type, was used to detect quantitative trait loci (QTL) for maturity. An Arachis SNP-array was used for genotyping, and a genetic map with 1425 SNP loci spanning 24 linkage groups was constructed. Six significant QTLs were identified for the maturity index (MI) trait on chromosomes A04, A08, B02 and B04. Two sets of stable QTLs in the same loci were identified, namely qMIA04a,b and qMIA08_2a,b with 11.5%, 8.1% and 7.3%, 8.2% of phenotypic variation explained respectively in two environments. Interestingly, one consistent QTL, qMIA04a,b, overlapped with the previously reported QTL in a Virginia × Virginia population having the same early-maturing parent ('Harari') in common. The information and materials generated here can promote informed targeting of peanut idiotypes by indirect marker-assisted selection.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Locos de Características Quantitativas/genética
8.
Front Plant Sci ; 13: 863908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909735

RESUMO

The combination of apomixis and hybrid production is hailed as the holy grail of agriculture for the ability of apomixis to fix heterosis of F1 hybrids in succeeding generations, thereby eliminating the need for repeated crosses to produce F1 hybrids. Apomixis, asexual reproduction through seed, achieves this feat by circumventing two processes that are fundamental to sexual reproduction (meiosis and fertilization) and replacing them with apomeiosis and parthenogenesis, resulting in seeds that are clonal to the maternal parent. Parthenogenesis, embryo development without fertilization, has been genetically engineered in rice, maize, and pearl millet using PsASGR-BABY BOOM-like (PsASGR-BBML) transgenes and in rice using the OsBABY BOOM1 (OsBBM1) cDNA sequence when expressed under the control of egg cell-specific promoters. A phylogenetic analysis revealed that BABY BOOM (BBM)/BBML genes from monocots cluster within three different clades. The BBM/BBML genes shown to induce parthenogenesis cluster within clade 1 (the ASGR-BBML clade) along with orthologs from other monocot species, such as Setaria italica. For this study, we tested the parthenogenetic potential of three BBM transgenes from S. italica, each a member of a different phylogenetic BBM clade. All transgenes were genomic constructs under the control of the AtDD45 egg cell-specific promoter. All SiBBM transgenes induced various levels of parthenogenetic embryo development, resulting in viable haploid T1 seedlings. Poor seed set and lower haploid seed production were characteristics of multiple transgenic lines. The results presented in this study illustrate that further functional characterization of BBMs in zygote/embryo development is warranted.

9.
Front Plant Sci ; 13: 925467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873991

RESUMO

Modern plant breeding programs rely heavily on the generation of homozygous lines, with the traditional process requiring the inbreeding of a heterozygous cross for five to six generations. Doubled haploid (DH) technology, a process of generating haploid plants from an initial heterozygote, followed by chromosome doubling, reduces the process to two generations. Currently established in vitro methods of haploid induction include androgenesis and gynogenesis, while in vivo methods are based on uni-parental genome elimination. Parthenogenesis, embryogenesis from unfertilized egg cells, presents another potential method of haploid induction. PsASGR-BABY BOOM-like, an AP2 transcription factor, induces parthenogenesis in a natural apomictic species, Pennisetum squamulatum (Cenchrus squamulatus) and PsASGR-BBML transgenes promote parthenogenesis in several crop plants, including rice, maize, and pearl millet. The dominant nature of PsASGR-BBML transgenes impedes their use in DH technology. Using a glucocorticoid-based post-translational regulation system and watering with a 100 µM DEX solution before anthesis, PsASGR-BBML can be regulated at the flowering stage to promote parthenogenesis. Conditional expression presents a novel opportunity to use parthenogenetic genes in DH production technology and to elucidate the molecular mechanism underlying parthenogenetic embryogenesis.

10.
Plant Biotechnol J ; 20(8): 1622-1635, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35524453

RESUMO

Plant genetic transformation is a crucial step for applying biotechnology such as genome editing to basic and applied plant science research. Its success primarily relies on the efficiency of gene delivery into plant cells and the ability to regenerate transgenic plants. In this study, we have examined the effect of several developmental regulators (DRs), including PLETHORA (PLT5), WOUND INDUCED DEDIFFERENTIATION 1 (WIND1), ENHANCED SHOOT REGENERATION (ESR1), WUSHEL (WUS) and a fusion of WUS and BABY-BOOM (WUS-P2A-BBM), on in planta transformation through injection of Agrobacterium tumefaciens in snapdragons (Antirrhinum majus). The results showed that PLT5, WIND1 and WUS promoted in planta transformation of snapdragons. An additional test of these three DRs on tomato (Solanum lycopersicum) further demonstrated that the highest in planta transformation efficiency was observed from PLT5. PLT5 promoted calli formation and regeneration of transformed shoots at the wound positions of aerial stems, and the transgene was stably inherited to the next generation in snapdragons. Additionally, PLT5 significantly improved the shoot regeneration and transformation in two Brassica cabbage varieties (Brassica rapa) and promoted the formation of transgenic calli and somatic embryos in sweet pepper (Capsicum annum) through in vitro tissue culture. Despite some morphological alternations, viable seeds were produced from the transgenic Bok choy and snapdragons. Our results have demonstrated that manipulation of PLT5 could be an effective approach for improving in planta and in vitro transformation efficiency, and such a transformation system could be used to facilitate the application of genome editing or other plant biotechnology application in modern agriculture.


Assuntos
Brassica , Capsicum , Solanum lycopersicum , Agrobacterium tumefaciens/genética , Brassica/genética , Capsicum/genética , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética , Transgenes
11.
Theor Appl Genet ; 135(5): 1767-1777, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35260930

RESUMO

KEY MESSAGE: A major gene controls flowering pattern in peanut, possibly encoding a TFL1-like. It was subjected to gain/loss events of a deletion and changes in mRNA expression levels, partly explaining the evolution of flowering pattern in Arachis. Flowering pattern (FP) is a major characteristic differentiating the two subspecies of cultivated peanut (Arachis hypogaea L.). Subsp. fastigiata possessing flowers on the mainstem (MSF) and a sequential FP, whereas subsp. hypogaea lacks MSF and exhibits an alternate FP. FP is considered the main contributor to plant adaptability, and evidence indicates that its diversification occurred during the several thousand years of domestication. However, the genetic mechanism that controls FP in peanut is unknown. We investigated the genetics of FP in a recombinant inbred population, derivatives of an A. hypogaea by A. fastigiata cross. Lines segregated 1:1 for FP, indicating a single gene effect. Using Axiom_Arachis2 SNP-array, FP was mapped to a small segment in chromosome B02, wherein a Terminal Flowering 1-like (AhTFL1) gene with a 1492 bp deletion was found in the fastigiata line, leading to a truncated protein. Remapping FP in the RIL population with the AhTFL1 indel as a marker increased the LOD score from 53.3 to 158.8 with no recombination in the RIL population. The same indel was found co-segregating with the phenotype in two independent EMS-mutagenized M2 families, suggesting a hotspot for gene conversion. Also, AhTFL1 was significantly less expressed in the fastigiata line compared to hypogaea and in flowering than non-flowering branches. Sequence analysis of the AhTFL1 in peanut world collections indicated significant conservation, supporting the putative role of AhTFL1 in peanut speciation during domestication and modern cultivation.


Assuntos
Arachis , Arachis/genética , Genoma de Planta , Mutação INDEL , Fenótipo
12.
Mol Plant Microbe Interact ; 35(2): 131-145, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34689599

RESUMO

Root nodule symbiosis (RNS) is the pillar behind sustainable agriculture and plays a pivotal role in the environmental nitrogen cycle. Most of the genetic, molecular, and cell-biological knowledge on RNS comes from model legumes that exhibit a root-hair mode of bacterial infection, in contrast to the Dalbergoid legumes exhibiting crack-entry of rhizobia. As a step toward understanding this important group of legumes, we have combined microscopic analysis and temporal transcriptome to obtain a dynamic view of plant gene expression during Arachis hypogaea (peanut) nodule development. We generated comprehensive transcriptome data by mapping the reads to A. hypogaea, and two diploid progenitor genomes. Additionally, we performed BLAST searches to identify nodule-induced yet-to-be annotated peanut genes. Comparison between peanut, Medicago truncatula, Lotus japonicus, and Glycine max showed upregulation of 61 peanut orthologs among 111 tested known RNS-related genes, indicating conservation in mechanisms of nodule development among members of the Papilionoid family. Unlike model legumes, recruitment of class 1 phytoglobin-derived symbiotic hemoglobin (SymH) in peanut indicates diversification of oxygen-scavenging mechanisms in the Papilionoid family. Finally, the absence of cysteine-rich motif-1-containing nodule-specific cysteine-rich peptide (NCR) genes but the recruitment of defensin-like NCRs suggest a diverse molecular mechanism of terminal bacteroid differentiation. In summary, our work describes genetic conservation and diversification in legume-rhizobia symbiosis in the Papilionoid family, as well as among members of the Dalbergoid legumes.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Arachis , Medicago truncatula , Arachis/genética , Arachis/microbiologia , Diferenciação Celular , Medicago truncatula/microbiologia , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética , Transcriptoma/genética
13.
Plant Cell Rep ; 41(1): 119-138, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34591155

RESUMO

KEY MESSAGE: Expression of Cre recombinase by AtRps5apro or AtDD45pro enabled Cre/lox-mediated recombination at an early embryonic developmental stage upon crossing, activating transgenes in the hybrid cowpea and tobacco. Genetic engineering ideally results in precise spatiotemporal control of transgene expression. To activate transgenes exclusively in a hybrid upon fertilization, we evaluated a Cre/lox-mediated gene activation system with the Cre recombinase expressed by either AtRps5a or AtDD45 promoters that showed activity in egg cells and young embryos. In crosses between Cre recombinase lines and transgenic lines harboring a lox-excision reporter cassette with ZsGreen driven by the AtUbq3 promoter after Cre/lox-mediated recombination, we observed complete excision of the lox-flanked intervening DNA sequence between the AtUbq3pro and the ZsGreen coding sequence in F1 progeny upon genotyping but no ZsGreen expression in F1 seeds or seedlings. The incapability to observe ZsGreen fluorescence was attributed to the activity of the AtUbq3pro. Strong ZsGreen expression in F1 seeds was observed after recombination when ZsGreen was driven by the AtUbq10 promoter. Using the AtDD45pro to express Cre resulted in more variation in recombination frequencies between transgenic lines and crosses. Regardless of the promoter used to regulate Cre, mosaic F1 progeny were rare, suggesting gene activation at an early embryo-developmental stage. Observation of ZsGreen-expressing tobacco embryos at the globular stage from crosses with the AtRps5aproCre lines pollinated by the AtUbq3prolox line supported the early activation mode.


Assuntos
Genes de Plantas , Integrases/genética , Proteínas de Plantas/genética , Ativação Transcricional , Transgenes , Vigna/genética , Integrases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Vigna/enzimologia
14.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34751378

RESUMO

The fatty acid composition of seed oil is a major determinant of the flavor, shelf-life, and nutritional quality of peanuts. Major QTLs controlling high oil content, high oleic content, and low linoleic content have been characterized in several seed oil crop species. Here, we employ genome-wide association approaches on a recently genotyped collection of 787 plant introduction accessions in the USDA peanut core collection, plus selected improved cultivars, to discover markers associated with the natural variation in fatty acid composition, and to explain the genetic control of fatty acid composition in seed oils. Overall, 251 single nucleotide polymorphisms (SNPs) had significant trait associations with the measured fatty acid components. Twelve SNPs were associated with two or three different traits. Of these loci with apparent pleiotropic effects, 10 were associated with both oleic (C18:1) and linoleic acid (C18:2) content at different positions in the genome. In all 10 cases, the favorable allele had an opposite effect-increasing and lowering the concentration, respectively, of oleic and linoleic acid. The other traits with pleiotropic variant control were palmitic (C16:0), behenic (C22:0), lignoceric (C24:0), gadoleic (C20:1), total saturated, and total unsaturated fatty acid content. One hundred (100) of the significantly associated SNPs were located within 1000 kbp of 55 genes with fatty acid biosynthesis functional annotations. These genes encoded, among others: ACCase carboxyl transferase subunits, and several fatty acid synthase II enzymes. With the exception of gadoleic (C20:1) and lignoceric (C24:0) acid content, which occur at relatively low abundance in cultivated peanuts, all traits had significant SNP interactions exceeding a stringent Bonferroni threshold (α = 1%). We detected 7682 pairwise SNP interactions affecting the relative abundance of fatty acid components in the seed oil. Of these, 627 SNP pairs had at least one SNP within 1000 kbp of a gene with fatty acid biosynthesis functional annotation. We evaluated 168 candidate genes underlying these SNP interactions. Functional enrichment and protein-to-protein interactions supported significant interactions (P-value < 1.0E-16) among the genes evaluated. These results show the complex nature of the biology and genes underlying the variation in seed oil fatty acid composition and contribute to an improved genotype-to-phenotype map for fatty acid variation in peanut seed oil.


Assuntos
Arachis , Ácidos Graxos , Arachis/genética , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/genética
15.
Front Plant Sci ; 13: 1076744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684745

RESUMO

Early leaf spot (ELS) and late leaf spot (LLS) diseases are the two most destructive groundnut diseases in Ghana resulting in ≤ 70% yield losses which is controlled largely by chemical method. To develop leaf spot resistant varieties, the present study was undertaken to identify single nucleotide polymorphism (SNP) markers and putative candidate genes underlying both ELS and LLS. In this study, six multi-locus models of genome-wide association study were conducted with the best linear unbiased predictor obtained from 294 African groundnut germplasm screened for ELS and LLS as well as image-based indices of leaf spot diseases severity in 2020 and 2021 and 8,772 high-quality SNPs from a 48 K SNP array Axiom platform. Ninety-seven SNPs associated with ELS, LLS and five image-based indices across the chromosomes in the 2 two sub-genomes. From these, twenty-nine unique SNPs were detected by at least two models for one or more traits across 16 chromosomes with explained phenotypic variation ranging from 0.01 - 62.76%, with exception of chromosome (Chr) 08 (Chr08), Chr10, Chr11, and Chr19. Seventeen potential candidate genes were predicted at ± 300 kbp of the stable/prominent SNP positions (12 and 5, down- and upstream, respectively). The results from this study provide a basis for understanding the genetic architecture of ELS and LLS diseases in African groundnut germplasm, and the associated SNPs and predicted candidate genes would be valuable for breeding leaf spot diseases resistant varieties upon further validation.

16.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518223

RESUMO

The narrow genetics of most crops is a fundamental vulnerability to food security. This makes wild crop relatives a strategic resource of genetic diversity that can be used for crop improvement and adaptation to new agricultural challenges. Here, we uncover the contribution of one wild species accession, Arachis cardenasii GKP 10017, to the peanut crop (Arachis hypogaea) that was initiated by complex hybridizations in the 1960s and propagated by international seed exchange. However, until this study, the global scale of the dispersal of genetic contributions from this wild accession had been obscured by the multiple germplasm transfers, breeding cycles, and unrecorded genetic mixing between lineages that had occurred over the years. By genetic analysis and pedigree research, we identified A. cardenasii-enhanced, disease-resistant cultivars in Africa, Asia, Oceania, and the Americas. These cultivars provide widespread improved food security and environmental and economic benefits. This study emphasizes the importance of wild species and collaborative networks of international expertise for crop improvement. However, it also highlights the consequences of the implementation of a patchwork of restrictive national laws and sea changes in attitudes regarding germplasm that followed in the wake of the Convention on Biological Diversity. Today, the botanical collections and multiple seed exchanges which enable benefits such as those revealed by this study are drastically reduced. The research reported here underscores the vital importance of ready access to germplasm in ensuring long-term world food security.


Assuntos
Arachis/genética , Produtos Agrícolas/genética , Sementes/genética , África , Ásia , Mapeamento Cromossômico/métodos , DNA de Plantas/genética , Marcadores Genéticos/genética , Variação Genética/genética , Genoma de Planta/genética , Hibridização Genética/genética , Oceania , Melhoramento Vegetal/métodos , Especificidade da Espécie
17.
Sci Rep ; 11(1): 9880, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972603

RESUMO

Apomixis, a type of asexual reproduction in angiosperms, results in progenies that are genetically identical to the mother plant. It is a highly desirable trait in agriculture due to its potential to preserve heterosis of F1 hybrids through subsequent generations. However, no major crops are apomictic. Deciphering mechanisms underlying apomixis becomes one of the alternatives to engineer self-reproducing capability into major crops. Parthenogenesis, a major component of apomixis, commonly described as the ability to initiate embryo formation from the egg cell without fertilization, also can be valuable in plant breeding for doubled haploid production. A deeper understanding of transcriptional differences between parthenogenetic and sexual or non-parthenogenetic eggs can assist with pathway engineering. By conducting laser capture microdissection-based RNA-seq on sexual and parthenogenetic egg cells on the day of anthesis, a de novo transcriptome for the Cenchrus ciliaris egg cells was created, transcriptional profiles that distinguish the parthenogenetic egg from its sexual counterpart were identified, and functional roles for a few transcription factors in promoting natural parthenogenesis were suggested. These transcriptome data expand upon previous gene expression studies and will be a resource for future research on the transcriptome of egg cells in parthenogenetic and sexual genotypes.


Assuntos
Apomixia/genética , Cenchrus/fisiologia , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal/métodos , Sementes/genética , Produtos Agrícolas/genética , RNA-Seq
18.
Front Plant Sci ; 12: 645291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995444

RESUMO

Cultivated peanut (Arachis hypogaea) is one of the most widely grown food legumes in the world, being valued for its high protein and unsaturated oil contents. Drought stress is one of the major constraints that limit peanut production. This study's objective was to identify the drought-responsive genes preferentially expressed under drought stress in different peanut genotypes. To accomplish this, four genotypes (drought tolerant: C76-16 and 587; drought susceptible: Tifrunner and 506) subjected to drought stress in a rainout shelter experiment were examined. Transcriptome sequencing analysis identified that all four genotypes shared a total of 2,457 differentially expressed genes (DEGs). A total of 139 enriched gene ontology terms consisting of 86 biological processes and 53 molecular functions, with defense response, reproductive process, and signaling pathways, were significantly enriched in the common DEGs. In addition, 3,576 DEGs were identified only in drought-tolerant lines in which a total of 74 gene ontology terms were identified, including 55 biological processes and 19 molecular functions, mainly related to protein modification process, pollination, and metabolic process. These terms were also found in shared genes in four genotypes, indicating that tolerant lines adjusted more related genes to respond to drought. Forty-three significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways were also identified, and the most enriched pathways were those processes involved in metabolic pathways, biosynthesis of secondary metabolites, plant circadian rhythm, phenylpropanoid biosynthesis, and starch and sucrose metabolism. This research expands our current understanding of the mechanisms that facilitate peanut drought tolerance and shed light on breeding advanced peanut lines to combat drought stress.

19.
BMC Plant Biol ; 21(1): 186, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874903

RESUMO

BACKGROUND: Time-to-maturation (TTM) is an important trait contributing to adaptability, yield and quality in peanut (Arachis hypogaea L). Virginia market-type peanut belongs to the late-maturing A. hypogaea subspecies with considerable variation in TTM within this market type. Consequently, planting and harvesting schedule of peanut cultivars, including Virginia market-type, need to be optimized to maximize yield and grade. Little is known regarding the genetic control of TTM in peanut due to the challenge of phenotyping and limited DNA polymorphism. Here, we investigated the genetic control of TTM within the Virginia market-type peanut using a SNP-based high-density genetic map. A recombinant inbred line (RIL) population, derived from a cross between two Virginia-type cultivars 'Hanoch' and 'Harari' with contrasting TTM (12-15 days on multi-years observations), was phenotyped in the field for 2 years following a randomized complete block design. TTM was estimated by maturity index (MI). Other agronomic traits like harvest index (HI), branching habit (BH) and shelling percentage (SP) were recorded as well. RESULTS: MI was highly segregated in the population, with 13.3-70.9% and 28.4-80.2% in years 2018 and 2019. The constructed genetic map included 1833 SNP markers distributed on 24 linkage groups, covering a total map distance of 1773.5 cM corresponding to 20 chromosomes on the tetraploid peanut genome with 1.6 cM mean distance between the adjacent markers. Thirty QTL were identified for all measured traits. Among the four QTL regions for MI, two consistent QTL regions (qMIA04a,b and qMIB03a,b) were identified on chromosomes A04 (118680323-125,599,371; 6.9Mbp) and B03 (2839591-4,674,238; 1.8Mbp), with LOD values of 5.33-6.45 and 5-5.35 which explained phenotypic variation of 9.9-11.9% and 9.3-9.9%, respectively. QTL for HI were found to share the same loci as MI on chromosomes B03, B05, and B06, demonstrating the possible pleiotropic effect of HI on TTM. Significant but smaller effects on MI were detected for BH, pod yield and SP. CONCLUSIONS: This study identified consistent QTL regions conditioning TTM for Virginia market-type peanut. The information and materials generated here can be used to further develop molecular markers to select peanut idiotypes suitable for diverse growth environments.


Assuntos
Arachis/crescimento & desenvolvimento , Arachis/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/fisiologia , Ligação Genética , Fenótipo
20.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33693764

RESUMO

Genome instability in newly synthesized allotetraploids of peanut has breeding implications that have not been fully appreciated. Synthesis of wild species-derived neo-tetraploids offers the opportunity to broaden the gene pool of peanut; however, the dynamics among the newly merged genomes creates predictable and unpredictable variation. Selfed progenies from the neo-tetraploid Arachis ipaënsis × Arachis correntina (A. ipaënsis × A. correntina)4x and F1 hybrids and F2 progenies from crosses between A. hypogaea × [A. ipaënsis × A. correntina]4x were genotyped by the Axiom Arachis 48 K SNP array. Homoeologous recombination between the A. ipaënsis and A. correntina derived subgenomes was observed in the S0 generation. Among the S1 progenies, these recombined segments segregated and new events of homoeologous recombination emerged. The genomic regions undergoing homoeologous recombination segregated mostly disomically in the F2 progenies from A. hypogaea × [A. ipaënsis × A. correntina]4x crosses. New homoeologous recombination events also occurred in the F2 population, mostly found on chromosomes 03, 04, 05, and 06. From the breeding perspective, these phenomena offer both possibilities and perils; recombination between genomes increases genetic diversity, but genome instability could lead to instability of traits or even loss of viability within lineages.


Assuntos
Arachis , Fabaceae , Arachis/genética , Fabaceae/genética , Genoma de Planta , Melhoramento Vegetal , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...