Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 664: 928-937, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503078

RESUMO

Bacteria-associated infections and thrombus formation are the two major complications plaguing the application of blood-contacting medical devices. Therefore, functionalized surfaces and drug delivery for passive and active antifouling strategies have been employed. Herein, we report the novel integration of bio-inspired superhydrophobicity with nitric oxide release to obtain a functional polymeric material with anti-thrombogenic and antimicrobial characteristics. The nitric oxide release acts as an antimicrobial agent and platelet inhibitor, while the superhydrophobic components prevent non-specific biofouling. Widely used medical-grade silicone rubber (SR) substrates that are known to be susceptible to biofilm and thrombus formation were dip-coated with fluorinated silicon dioxide (SiO2) and silver (Ag) nanoparticles (NPs) using an adhesive polymer as a binder. Thereafter, the resulting superhydrophobic (SH) SR substrates were impregnated with S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) to obtain a superhydrophobic, Ag-bound, NO-releasing (SH-SiAgNO) surface. The SH-SiAgNO surfaces had the lowest amount of viable adhered E. coli (> 99.9 % reduction), S. aureus (> 99.8 % reduction), and platelets (> 96.1 % reduction) as compared to controls while demonstrating no cytotoxic effects on fibroblast cells. Thus, this innovative approach is the first to combine SNAP with an antifouling SH polymer surface that possesses the immense potential to minimize medical device-associated complications without using conventional systemic anticoagulation and antibiotic treatments.


Assuntos
Anti-Infecciosos , Trombose , Humanos , Óxido Nítrico/química , Prata/farmacologia , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia , Staphylococcus aureus , Escherichia coli , Dióxido de Silício/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Trombose/prevenção & controle , Polímeros/química
2.
ACS Appl Mater Interfaces ; 15(5): 7610-7626, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36700859

RESUMO

Hybrid organic-inorganic materials are attracting enormous interest in materials science due to the combination of multiple advantageous properties of both organic and inorganic components. Taking advantage of a simple, scalable, solvent-free hard-sacrificial method, we report the successful fabrication of three-dimensional hybrid porous foams by integrating two types of fillers into a poly(dimethylsiloxane) (PDMS) framework. These fillers consist of hydrophobic electrically conductive graphene (GR) nanoplatelets and hydrophobic bactericidal copper (Cu) microparticles. The fillers were utilized to create the hierarchical rough structure with low-surface-energy properties on the PDMS foam surfaces, leading to remarkable superhydrophobicity/superoleophilicity with contact angles of 158 and 0° for water and oil, respectively. The three-dimensional interconnected porous foam structures facilitated high oil adsorption capacity and excellent reusability as well as highly efficient oil/organic solvent-water separation in turbulent, corrosive, and saline environments. Moreover, the introduction of the fillers led to a significant improvement in the electrical conductivity and biofouling resistance (vs whole blood, fibrinogen, platelet cells, and Escherichia coli) of the foams. We envision that the developed composite strategy will pave a facile, scalable, and effective way for fabricating novel multifunctional hybrid materials with ideal properties that may find potential use in a broad range of biomedical, energy, and environmental applications.

3.
J Colloid Interface Sci ; 628(Pt B): 911-921, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030716

RESUMO

HYPOTHESIS: Alginate is widely used in biomedical applications due to its high biocompatibility as well as structural and mechanical similarities to human tissue. Further, simple ionic crosslinking of alginate allows for the formation of alginate beads capable of drug delivery. S-nitrosoglutathione is a water-soluble molecule that releases nitric oxide in physiological conditions, where it acts as a potent antimicrobial gas, among other functions. As macrophages and endothelial cells endogenously produce nitric oxide, incorporating nitric oxide donors into polymers and hydrogels introduces a biomimetic approach to mitigate clinical infections, including those caused by antibiotic-resistant microorganisms. The incorporation of S-nitrosoglutathione into macro-scale spherical alginate beads is reported for the first time and shows exciting potential for biomedical applications. EXPERIMENTS: Herein, nitric oxide-releasing crosslinked alginate beads were fabricated and characterized for surface and cross-sectional morphology, water uptake, size distribution, and storage stability. In addition, the NO release was quantified by chemiluminescence and its biological effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were investigated. The biocompatibility of the alginate beads was tested against 3T3 mouse fibroblast cells. FINDINGS: Overall, nitric oxide-releasing alginate beads demonstrate biologically relevant activities without eliciting a cytotoxic response, revealing their potential use as an antimicrobial material with multiple mechanisms of bacterial killing.


Assuntos
Anti-Infecciosos , Gasotransmissores , Camundongos , Animais , Humanos , Alginatos/química , Doadores de Óxido Nítrico/química , Óxido Nítrico/metabolismo , S-Nitrosoglutationa , Biomimética , Células Endoteliais , Estudos Transversais , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Polímeros/química , Água
4.
J Colloid Interface Sci ; 608(Pt 1): 1015-1024, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785450

RESUMO

Addressing thrombosis and biofouling of indwelling medical devices within healthcare institutions is an ongoing problem. In this work, two types of ultra-low fouling surfaces (i.e., superhydrophobic and lubricant-infused slippery surfaces) were fabricated to enhance the biocompatibility of commercial medical grade silicone rubber (SR) tubes that are widely used in clinical care. The superhydrophobic (SH) coatings on the tubing substrates were successfully created by dip-coating in superhydrophobic paints consisting of polydimethylsiloxane (PDMS), perfluorosilane-coated hydrophobic zinc oxide (ZnO) and copper (Cu) nanoparticles (NPs) in tetrahydrofuran (THF). The SH surfaces were converted to lubricant-infused slippery (LIS) surfaces through the infusion of silicone oil. The anti-biofouling properties of the coatings were investigated by adsorption of platelets, whole blood coagulation, and biofilm formation in vitro. The results revealed that the LIS tubes possess superior resistance to clot formation and platelet adhesion than uncoated and SH tubes. In addition, bacterial adhesion was investigated over 7 days in a drip-flow bioreactor, where the SH-ZnO-Cu tube and its slippery counterpart significantly reduced bacterial adhesion and biofilm formation of Escherichia coli relative to control tubes (>5 log10 and >3 log10 reduction, respectively). The coatings also demonstrated good compatibility with fibroblast cells. Therefore, the proposed coatings may find potential applications in high-efficiency on-demand prevention of biofilm and thrombosis formation on medical devices to improve their biocompatibility and reduce the risk of complications from medical devices.


Assuntos
Incrustação Biológica , Trombose , Aderência Bacteriana , Biofilmes , Incrustação Biológica/prevenção & controle , Humanos , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Trombose/prevenção & controle
5.
ACS Appl Mater Interfaces ; 12(46): 51160-51173, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33143413

RESUMO

Biofilm and thrombus formation on surfaces results in significant morbidity and mortality worldwide, which highlights the importance of the development of efficacious fouling-prevention approaches. In this work, novel highly robust and superhydrophobic coatings with outstanding multiliquid repellency, bactericidal performance, and extremely low bacterial and blood adhesion are fabricated by a simple two-step dip-coating method. The coatings are prepared combining 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS-17)-coated hydrophobic zinc oxide and copper nanoparticles to construct hierarchical micro/nanostructures on commercial polyurethane (PU) sponges followed by polydimethylsiloxane (PDMS) treatment that is used to improve the binding degree between the nanoparticles and the sponge surface. The micro/nanotextured samples can repel various liquids including water, milk, coffee, juice, and blood. Relative to the original PU, the superhydrophobic characteristics of the fabricated sponge cause a significant reduction in the adhesion of bacteria (Staphylococcus aureus) by up to 99.9% over a 4-day period in a continuous drip-flow bioreactor. The sponge is also highly resistant to the adhesion of fibrinogen and activated platelets with ∼76 and 64% reduction, respectively, hence reducing the risk of blood coagulation and thrombus formation. More importantly, the sponge can sustain its superhydrophobicity even after being subjected to different types of harsh mechanical damage such as finger-wiping, knife-scratching, tape-peeling, hand-kneading, hand-rubbing, bending, compress-release (1000 cycles) tests, and 1000 cm sandpaper abrasion under 250 g of loading. Hence, this novel hybrid surface with robustness and the ability to resist blood adhesion and bacterial contamination makes it an attractive candidate for use in diverse application areas.


Assuntos
Bandagens , Materiais Biocompatíveis/farmacologia , Poliuretanos/química , Staphylococcus aureus/efeitos dos fármacos , Animais , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Dimetilpolisiloxanos/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Camundongos , Agregação Plaquetária/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Propriedades de Superfície , Suínos , Óxido de Zinco/química
6.
ACS Omega ; 3(3): 3190-3199, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023864

RESUMO

The prevalence of hospital-acquired infections (HAIs) caused by multidrug-resistant bacteria is a growing public health concern worldwide. Herein, a facile, easily scalable technique is reported to fabricate white-light-activated bactericidal surfaces by incorporating zinc oxide (ZnO) nanoparticles and crystal violet (CV) dye into poly(dimethylsiloxane). The effect of ZnO concentration on photobactericidal activity of CV is investigated, and we show that there is synergy between ZnO and CV. These materials showed highly significant antibacterial activity when tested against Staphylococcus aureus and Escherichia coli under white light conditions. These surfaces have potential to be used in healthcare environments to decrease the impact of HAIs.

7.
Chem Sci ; 7(8): 5126-5131, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155163

RESUMO

The adhesion and proliferation of bacteria on solid surfaces presents a major challenge in both healthcare and industrial applications. In response to this problem, an effective and simple method is reported to fabricate superhydrophobic antibacterial copper coated polymer films via aerosol assisted chemical vapor deposition (AACVD). The material is characterized using a range of techniques including electron microscopy, water contact angle measurement and elemental mapping. The antibacterial activity of the modified film is tested against the Gram-negative bacterium, Escherichia coli, and the Gram-positive bacterium, Staphylococcus aureus and the film shows highly significant antibacterial activity against both bacteria (>4 log reduction in bacterial numbers) in 15 min and 60 min, respectively. In addition, all the CVD modified samples results in a significant reduction in bacterial cell adhesion compared to the control materials. Thus, we report a new film type that has dual mode of action-the superhydrophobicity helps limit cell adhesion combined with a cytotoxic copper induced bacteria kill.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...