Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 77: 117111, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463726

RESUMO

A novel series of 1,2,3-triazole benzenesulfonamide substituted 1,3-dioxoisoindolin-5-carboxylate (7a-l) inhibitors of human α-carbonic anhydrase (hCA) was designed using a tail approach. The design method relies on the hybridization of a benzenesulfonamide moiety with a tail of 1,3-dioxoisoindoline-5-carboxylate and a zinc-binding group on a 1,2,3-triazole scaffold. Among the synthesized analogues, 2­iodophenyl (7f, KI of 105.00 nM and SI of 2.98) and 2­naphthyl (7h, KI of 32.11 nM and SI of 3.48) analogues (over off-target hCA I) and phenyl (7a, KI of 50.13 nM and SI of 2.74) and 2,6­dimethylphenyl (7d, KI of 50.60 nM and SI of 3.35) analogues (over off-target hCA II) exhibited a remarkable selectivity for tumor isoforms hCA IX and XII, respectively. Meanwhile, analogue 7a displayed a potent inhibitory effect against the tumor-associated isoform hCA IX (KI of 18.29 nM) compared with the reference drug acetazolamide (AAZ, KI of 437.20 nM), and analogue 7h showed higher potency (KI of 9.22 nM) than AAZ (KI of 338.90 nM) against another tumor-associated isoform hCA XII. However, adding the lipophilic large naphthyl tail to the 1,3-dioxoisoindolin-5-carboxylate analogues increased both the hCA inhibitory and selective activities against the target isoform, hCA XII. Additionally, these analogues (7a-l) showed IC50 values against the human lung (A549) adenocarcinoma cancer cell line ranging from 129.71 to 352.26 µM. The results of the molecular docking study suggested that the sulfonamide moiety fits snugly into the hCAs active sites and interacts with the Zn2+ ion. At the same time, the tail extension engages in various hydrophilic and hydrophobic interactions with the nearby amino acids, which affects the potency and selectivity of the hybrids.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Isoenzimas/metabolismo , Anidrases Carbônicas/metabolismo , Anidrase Carbônica IX/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Triazóis/farmacologia , Triazóis/química , Benzenossulfonamidas
2.
Drug Chem Toxicol ; 46(2): 314-322, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35045766

RESUMO

Bisphenol A (BPA) BPA is an endocrine-disrupting chemical that has a wide range of uses. Exposure to BPA can be by oral, inhalation, and parenteral routes. Although its use in several products is limited, there is still concern on its adverse health effects, particularly for susceptible populations like children. Alternative bisphenols, such as bisphenol S (BPS) and bisphenol F (BPF), are now being used instead of BPA, although there is little information on the toxicity of these bisphenols. BPF is used as a plasticizer in the production of several industrial materials as well as in the coating of drinks and food cans. BPS is used in curing fast-drying epoxy glues, as a corrosion inhibitor and as a reactant in polymer reactions. In this study, the possible toxic effects of BPA, BPS, and BPF in HepG2 cells were evaluated comparatively. For this purpose, their effects on cytotoxicity, production of intracellular reactive oxygen species (ROS), oxidant/antioxidant parameters, and DNA damage have been examined. The cytotoxicity potentials of different bisphenols were found to be as BPS > BPF > BPA. All bisphenol derivatives caused increases in intracellular ROS production. We observed that all bisphenol derivatives cause an imbalance in some oxidant/antioxidant parameters. Bisphenols also caused significant DNA damage in order of BPF > BPA > BPS. We can suggest that both of the bisphenol derivatives used as alternatives to BPA also showed similar toxicities and may not be considered as safe alternatives. Mechanistic studies are needed to elucidate this issue.


Assuntos
Antioxidantes , Estresse Oxidativo , Criança , Humanos , Antioxidantes/farmacologia , Células Hep G2 , Oxidantes , Espécies Reativas de Oxigênio
3.
Environ Sci Pollut Res Int ; 30(5): 12189-12206, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36104651

RESUMO

Endocrine disrupting chemicals (EDCs) may affect many biological processes like growth and stress response. Bisphenol A (BPA) is a plasticizer that is used to harden plastics and polycarbonates. Phthalates are used to add flexibility to polyvinyl chloride containing plastics. The main metabolite of di(2-ethylhexyl) phthalate (DEHP) is mono(2-ethylhexyl) phthalate (MEHP) and it is even more toxic than the parent compound. Humans are usually exposed to these chemicals in mixtures by different routes starting from fetal period. However, there are not many studies in literature that investigate the combined effects of these chemicals. The aim of this study is to investigate toxic effects of BPA and/or MEHP on HepG2 cell line. We have evaluated cytotoxicity, cytomorphological, apoptotic changes, oxidative stress, oxidant/antioxidant status alterations, and endoplasmic reticulum (ER) stress. Combined exposure to BPA and MEHP caused alterations in oxidant/antioxidant status and ER stress marker proteins in both cytoplasmic and nuclear cellular fractions. We can suggest that combined exposure to EDCs may cause serious toxicological outcomes and more mechanistic studies are needed to determine the combined toxic effects.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Ácidos Ftálicos , Humanos , Antioxidantes , Oxidantes , Ácidos Ftálicos/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Plásticos , Apoptose , Estresse do Retículo Endoplasmático , Disruptores Endócrinos/toxicidade , Linhagem Celular
4.
Toxicol Mech Methods ; 32(8): 597-605, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35321620

RESUMO

Bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) are endocrine disrupting chemicals (EDCs) that are abundantly used in polyvinyl chloride plastics, polycarbonates and epoxy resins. Prenatal and early postnatal exposures to EDCs are suggested to be more critical. Such exposures can lead to reprotoxic effects, hormonal and metabolic consequences in adulthood. Moreover, combined exposure to different EDCs can lead to more serious adverse effects, some of which cannot be predicted by examining their individual toxicity profiles. This study aimed to evaluate effects of single and combined prenatal and lactational exposures to BPA and/or DEHP on female reproductive hormones and ovarian follicle development. Pregnant Sprague-Dawley rats were divided randomly to four groups (n = 3/group): Control (received vehicle only); DEHP (30 mg/kg/day); BPA (50 mg/kg/day) and BPA + DEHP (30 mg/kg/day DEHP; 50 mg/kg/day BPA) through 6-21 gestational days and lactation by intra-gastric lavage. Female offspring (n = 6/group) were fed until the end of twelfth postnatal week and then euthanized. Reproductive hormones, ovarian follicle numbers and ovarian development were determined. Plasma testosterone and estradiol levels of BPA and BPA + DEHP groups were significantly lower than control. In BPA group, the number of tertiary ovarian follicles decreased significantly compared to control. In the combined exposure group, the number of corpus luteum (29%), as well as the number of primordial follicles (36%), showed marked decreases compared to control group. It can be suggested that early life exposure to BPA and DEHP may cause late life adverse effects in female reproductive system, especially after combined exposure.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Efeitos Tardios da Exposição Pré-Natal , Animais , Compostos Benzidrílicos , Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Feminino , Humanos , Lactação , Folículo Ovariano , Fenóis , Ácidos Ftálicos , Plásticos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Testosterona
5.
Int J Environ Health Res ; 32(4): 902-915, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32787440

RESUMO

Bisphenol A (BPA) and phthalates are abundantly used endocrine disrupting chemicals (EDCs). The aim of this study was to evaluate the effects of single and combined exposures to BPA and/or di(2-ethylhexyl) phthalate (DEHP) in prenatal and lactational period on rat male reproductive system in later stages of life. Pregnant Sprague-Dawley rats were divided randomly to four groups (n = 3/group): Control (corn oil); DEHP (30 mg/kg/day); BPA (50 mg/kg/day); and BPA+ DEHP (30 mg/kg/day DEHP and 50 mg/kg/day BPA). Groups exposed to EDCs through 6-21 gestational days and lactation period by intragastric lavage. Male offspring (n = 6/group) from each mother were fed till adulthood and were then euthanized. Later, reproductive hormones, sperm parameters, and oxidative stress parameters were determined. In conclusion, we can suggest that prenatal and lactational exposure to BPA and DEHP may cause adverse effects in male reproductive system in later stages of life especially after combined exposure.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Efeitos Tardios da Exposição Pré-Natal , Animais , Compostos Benzidrílicos , Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Feminino , Genitália Masculina , Lactação , Masculino , Fenóis , Ácidos Ftálicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley
6.
Environ Sci Pollut Res Int ; 28(21): 26961-26974, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33496947

RESUMO

Bisphenol A (BPA) and di(2-ethylhexyl)phthalate (DEHP) are abundant endocrine disrupting chemicals (EDCs). In recent years, studies showed that EDCs may lead to neurodevelopmental diseases. The effects of prenatal exposure to these chemicals may have serious consequences. Moreover, exposure to EDCs as a mixture may have different effects than individual exposures. The present study aimed to determine the toxicity of BPA and/or DEHP on central nervous system (CNS) and neuroendocrine system in prenatal and lactational period in Sprague-Dawley rats. Pregnant rats were randomly divided into four groups: control (received vehicle); BPA group (received BPA at 50 mg/kg/day); DEHP group (received DEHP at 30 mg/kg/day); and combined exposure group (received both BPA at 50 mg/kg/day and DEHP at 30 mg/kg/day) during pregnancy and lactation by oral gavage. At the end of lactation, male offspring (n = 6) were randomly grouped. The alterations in the brain histopathology, neurotransmitter levels and enzyme activities in the cerebrum region, oxidative stress markers, and apoptotic effects in the hippocampus region were determined at adulthood. The results showed that exposure to EDCs at early stages of life caused significant changes in lipid peroxidation, total GSH and neurotransmitter levels, and activities of neurotransmitter-related enzymes. Moreover, BPA and/or DEHP led to apoptosis and histopathologic alterations in the hippocampus. Therefore, we can suggest that changes in oxidant/antioxidant status, as well as in neurotransmitters and related enzymes, can be considered as the underlying neurotoxicity mechanisms of BPA and DEHP. However, more mechanistic studies are needed.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Efeitos Tardios da Exposição Pré-Natal , Animais , Compostos Benzidrílicos , Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Feminino , Lactação , Masculino , Sistemas Neurossecretores , Fenóis , Ácidos Ftálicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley
7.
Arh Hig Rada Toksikol ; 71(2): 110-120, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975097

RESUMO

Aroclor 1254 (A1254), a mixture of polychlorinated biphenyls, exerts hepatic, renal, and reproductive toxicity in rodents. This study aimed to determine a protective role of selenium on histopathological changes, oxidative stress, and apoptosis caused by A1254 in rat kidney. It included a control group, which received regular diet containing 0.15 mg/kg Se (C), a Se-supplemented group (SeS) receiving 1 mg/kg Se, a Se-deficient group (SeD) receiving Se-deficient diet of ≤0.05 mg/kg Se, an A1254-treated group (A) receiving 10 mg/kg of Aroclor 1254 and regular diet, an A1254-treated group receiving Se-supplementation (ASeS), and an A1254-treated group receiving Se-deficient diet (ASeD). Treatments lasted 15 days. After 24 h of the last dose of A1254, the animals were decapitated under anaesthesia and their renal antioxidant enzyme activities, lipid peroxidation (LP), glutathione, protein oxidation, and total antioxidant capacity levels measured. Histopathological changes were evaluated by light and electron microscopy. Apoptosis was detected with the TUNEL assay. Kidney weights, CAT activities, and GSH levels decreased significantly in all A1254-treated groups. Renal atrophic changes and higher apoptotic cell counts were observed in the A and ASeD groups. Both groups also showed a significant drop in GPx1 activities (A - 34.92 % and ASeD - 86.46 %) and rise in LP (A - 30.45 % and ASeD - 20.44 %) vs control. In contrast, LP levels and apoptotic cell counts were significantly lower in the ASeS group vs the A group. Histopathological changes and renal apoptosis were particularly visible in the ASeD group. Our findings suggest that selenium supplementation provides partial protection against renal toxicity of Aroclor 1254.


Assuntos
Selênio , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , /toxicidade , Rim/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Selênio/toxicidade
8.
Int J Toxicol ; 39(4): 328-340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483993

RESUMO

Gold nanoparticles (AuNPs) have been widely used in many biological and biomedical applications. In this regard, their surface modification is of paramount importance in order to increase their cellular uptake, delivery capability, and optimize their distribution inside the body. The aim of this study was to examine the effects of AuNPs on cytotoxicity, oxidant/antioxidant parameters, and DNA damage in HepG2 cells and investigate the potential toxic effects of different surface modifications such as polyethylene glycol (PEG) and polyethyleneimine (PEI; molecular weights of 2,000 (low molecular weight [LMW]) and 25,000 (high molecular weight [HMW]). The study groups were determined as AuNPs, PEG-coated AuNPs (AuNPs/PEG), low-molecular weight polyethyleneimine-coated gold nanoparticles (AuNPs/PEI LMW), and high-molecular weight polyethyleneimine-coated gold nanoparticles (AuNPs/PEI HMW). After incubating HepG2 cells with different concentrations of nanoparticles for 24 hours, half maximal inhibitory concentrations (the concentration that kills 50% of the cells) were determined as 166.77, 257.73, and 198.44 µg/mL for AuNPs, AuNPs/PEG, and AuNPs/PEI LMW groups, respectively. Later, inhibitory concentration 30 (IC30, the concentration that kills 30% of the cells) doses were calculated, and further experiments were performed on cells that were exposed to IC30 doses. Although intracellular reactive oxygen species levels significantly increased in all nanoparticles, AuNPs as well as AuNPs/PEG did not cause any changes in oxidant/antioxidant parameters. However, AuNPs/PEI HMW particularly induced oxidative stress as evidence of alterations in lipid peroxidation and protein oxidation. These results suggest that at IC30 doses, AuNPs do not affect oxidative stress and DNA damage significantly. Polyethylene glycol coating does not have an impact on toxicity, however PEI coating (particularly HMW) can induce oxidative stress.


Assuntos
Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Polietilenoglicóis/toxicidade , Polietilenoimina/toxicidade , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Ouro/química , Células Hep G2 , Humanos , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoimina/química , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
9.
Environ Sci Pollut Res Int ; 27(16): 20104-20116, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32239407

RESUMO

Bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) are endocrine-disrupting chemicals (EDCs) used in a wide variety of industrial products as plasticizers. Exposure to EDCs, particularly in mixtures, in prenatal and early postnatal periods may lead to unwanted effects and can cause both developmental and reproductive problems. In this study, we aimed to determine the individual and combined effects of prenatal and lactational exposure to BPA and/or DEHP on testicular histology, apoptosis, and autophagic proteins. Pregnant Sprague-Dawley rats (n = 3) were divided into four groups (control, BPA (50 mg/kg/day), DEHP (30 mg/kg/day), and BPA (50 mg/kg/day) + DEHP (30 mg/kg/day)) and dosed by oral gavage during pregnancy and lactation. The male offspring (n = 6) from each group were chosen randomly, and their testicular examinations were performed on the twelfth week. The results showed that fetal and neonatal exposure to BPA and DEHP could lead to significant testicular histopathological alterations and cause increases in apoptosis markers (as evidenced by increases in caspase 3 and caspase 8 levels; increased TUNEL-positive spermatogonia and TUNEL-positive testicular apoptotic cells) and autophagic proteins (as evidenced by increased LC3 and Beclin levels and decreased p62 levels) in testicular tissue. We can suggest that EDCs cause more dramatic changes in both testicular structure and cell death when there is combined exposure.


Assuntos
Dietilexilftalato , Efeitos Tardios da Exposição Pré-Natal , Animais , Compostos Benzidrílicos , Feminino , Masculino , Fenóis , Ácidos Ftálicos , Plastificantes , Gravidez , Ratos , Ratos Sprague-Dawley , Testículo
10.
J Environ Pathol Toxicol Oncol ; 38(3): 253-270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31679312

RESUMO

Di(2-ethylhexyl)phthalate (DEHP) is the most widely used phthalate. DEHP is highly used in PVC floorings and PVC windows and carpeting. The objective of this study was to determine sex hormone levels, oxidative stress parameters, selenium levels, DNA damage, and phthalate levels in plastics workers (n = 24, age = 20-58 years) working in the production of rubber mechanical goods and exposed to DEHP in workplace. The control group (n = 29, age = 25-54, all male) was selected from age-matched healthy adults. Antioxidant parameters and DNA damage were determined by spectrophotometry. Selenium levels were determined by atomic absorption spectroscopy. Plasma hormone levels were measured by chemiluminescence microparticle immunoassay. Plasma phthalate levels were determined by high-pressure liquid chromatography. Plastic workers had lower serum testosterone and free T4 levels and higher follicle-stimulating hormone levels vs. controls. Liver enzyme activities were markedly higher in workers vs. controls. There were also increases in plasma glutathione peroxidase levels and marked decreases in plasma selenium and erythrocyte total glutathione levels in plastics workers (P < 0.05 vs. control). Plasma 8-hydroxy-2'-deoxyguanosine levels were 14-fold higher in plastics workers than in controls. Plasma DEHP and mono(2-ethylhexyl)phthalate were also markedly higher in workers vs. controls. The results of this study show that occupational exposure to DEHP may lead to disturbances in sex hormones, increased liver problems, higher oxidative stress and DNA damage levels, and lower trace element concentrations in workers. More comprehensive and mechanistic studies with higher numbers of subjects are needed to show the unwanted effects of occupational exposure to DEHP.


Assuntos
Dano ao DNA , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Poluentes Ambientais/toxicidade , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Selênio/metabolismo , Adulto , Hormônios Esteroides Gonadais/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Turquia
11.
Reprod Toxicol ; 87: 146-155, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31170452

RESUMO

Bisphenol A (BPA) and phthalates can adversely affect the fetal development. However, observational studies on the effects of these chemicals on fetal male reproductive system are still limited. A hundred of umbilical cord blood samples were analyzed for the levels of BPA, di-2-ethylhexyl phthalate (DEHP), mono-2-ethylhexyl phthalate (MEHP), and sex hormones. After birth, male newborns underwent physical examination that included measurements of anogenital distance, stretched penile length (SPL), and penile width. BPA, DEHP and MEHP levels were detectable in ≈99% of cord blood samples. In covariate-adjusted models, cord blood BPA levels were inversely associated with SPL of newborns and positively associated with cord blood estradiol levels. In addition, there was a significant inverse relationship between cord blood DEHP levels and anogenital distance index of newborn males. Our results suggest that in utero BPA and DEHP exposure exerted adverse effects on fetal male reproductive development and cord blood estradiol levels.


Assuntos
Compostos Benzidrílicos/análise , Dietilexilftalato/análogos & derivados , Dietilexilftalato/análise , Disruptores Endócrinos/análise , Poluentes Ambientais/análise , Sangue Fetal/química , Genitália Masculina/crescimento & desenvolvimento , Fenóis/análise , Adulto , Monitoramento Biológico , Feminino , Hormônios Esteroides Gonadais/sangue , Humanos , Masculino , Exposição Materna , Troca Materno-Fetal , Gravidez , Fatores de Risco , Hormônios Tireóideos/sangue , Adulto Jovem
12.
J Pediatr Endocrinol Metab ; 31(8): 829-836, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-29975667

RESUMO

BACKGROUND: Bisphenol-A (BPA) is one of the most abundantly produced chemicals globally. Concerns have been raised about BPA's possible role in the pathogenesis of type 1 diabetes mellitus (T1DM). The main aim of the current study was to evaluate the possible association between BPA exposure and T1DM. The second aim was to investigate children's possible BPA exposure routes in Turkey. METHODS: A total of 100 children aged between 5 and 18 years including 50 children with T1DM and 50 healthy children were included. Urinary BPA levels of all children were measured using high-performance liquid chromatography. Mothers of children enrolled in the study were also requested to complete a survey that included questions on the sociodemographic characteristics, medical history and possible BPA exposure routes of their children. RESULTS: In the T1DM group, urinary BPA levels were slightly higher compared to the control group, but this difference was not significant (p=0.510). However, there was an inverse relationship between current urinary BPA levels and birth weight. It was found that the use of plastic kettles and the consumption of dairy products in plastic boxes significantly increased the urinary BPA concentrations in all subjects. CONCLUSIONS: Although there was no significant association between urinary BPA levels and T1DM, we found an inverse relationship between current urinary BPA levels and birth weight. This finding might be important for prenatal exposure, and further prospective research must be conducted. Also, the use of plastic kettles, which has not been mentioned much in the literature before, was found to be an important exposure route for BPA.


Assuntos
Compostos Benzidrílicos/urina , Biomarcadores/urina , Diabetes Mellitus Tipo 1/urina , Sequestradores de Radicais Livres/urina , Fenóis/urina , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Prognóstico , Turquia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...