Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(14)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343590

RESUMO

Objective. Megavoltage cone-beam computed tomography (MV-CBCT) imaging offers several advantages including reduced metal artifacts and accurate electron density mapping for adaptive or emergent situations. However, MV-CBCT imaging is limited by the poor efficiency of current detectors. Here we examine a new MV imager and compare CBCT reconstructions under clinically relevant scenarios.Approach. A multilayer imager (MLI), consisting of four vertically stacked standard flat-panel imagers, was mounted to a clinical linear accelerator. A custom anthropomorphic pelvis phantom with replaceable femoral heads was imaged using MV-CBCT and kilovoltage CBCT (kV-CBCT). Bone, aluminum, and titanium were used as femoral head inserts. 8 MU 2.5 MV scans were acquired for all four layers and (as reference) the top layer. Prostate and bladder were contoured on a reference CT and transferred to the other scans after rigid registration, from which the structural similarity index measure (SSIM) was calculated. Prostate and bladder were also contoured on CBCT scans without guidance, and Dice coefficients were compared to CT contours.Main results. kV-CBCT demonstrated the highest SSIMs with bone inserts (prostate: 0.86, bladder: 0.94) and lowest with titanium inserts (0.32, 0.37). Four-layer MV-CBCT SSIMs were preserved with bone (0.75, 0.80) as compared to titanium (0.67, 0.74), outperforming kV-CBCT when metal is present. One-layer MV-CBCT consistently underperformed four-layer results across all phantom configurations. Unilateral titanium inserts and bilateral aluminum insert results fell between the bone and bilateral titanium results. Dice coefficients trended similarly, with four-layer MV-CBCT reducing metal artifact impact relative to KV-CBCT to provide better soft-tissue identification.Significance. MV-CBCT with a four-layer MLI showed improvement over single-layer MV scans, approaching kV-CBCT quality for soft-tissue contrast. In the presence of artifact-producing metal implants, four-layer MV-CBCT scans outperformed kV-CBCT by eliminating artifacts and single-layer MV-CBCT by reducing noise. MV-CBCT with a novel multi-layer imager may be a valuable alternative to kV-CBCT, particularly in the presence of metal.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico Espiral , Titânio , Alumínio , Tomografia Computadorizada de Feixe Cônico/métodos , Metais , Imagens de Fantasmas
2.
Phys Med Biol ; 68(1)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36533621

RESUMO

Objective. Beams of stable ions have been a well-established tool for radiotherapy for many decades. In the case of ion beam therapy with stable12C ions, the positron emitters10,11C are produced via projectile and target fragmentation, and their decays enable visualization of the beam via positron emission tomography (PET). However, the PET activity peak matches the Bragg peak only roughly and PET counting statistics is low. These issues can be mitigated by using a short-lived positron emitter as a therapeutic beam.Approach.An experiment studying the precision of the measurement of ranges of positron-emitting carbon isotopes by means of PET has been performed at the FRS fragment-separator facility of GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany. The PET scanner used in the experiment is a dual-panel version of a Siemens Biograph mCT PET scanner.Main results.High-quality in-beam PET images and activity distributions have been measured from the in-flight produced positron emitting isotopes11C and10C implanted into homogeneous PMMA phantoms. Taking advantage of the high statistics obtained in this experiment, we investigated the time evolution of the uncertainty of the range determined by means of PET during the course of irradiation, and show that the uncertainty improves with the inverse square root of the number of PET counts. The uncertainty is thus fully determined by the PET counting statistics. During the delivery of 1.6 × 107ions in 4 spills for a total duration of 19.2 s, the PET activity range uncertainty for10C,11C and12C is 0.04 mm, 0.7 mm and 1.3 mm, respectively. The gain in precision related to the PET counting statistics is thus much larger when going from11C to10C than when going from12C to11C. The much better precision for10C is due to its much shorter half-life, which, contrary to the case of11C, also enables to include the in-spill data in the image formation.Significance. Our results can be used to estimate the contribution from PET counting statistics to the precision of range determination in a particular carbon therapy situation, taking into account the irradiation scenario, the required dose and the PET scanner characteristics.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas , Meia-Vida , Alemanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA