Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Methods Mol Biol ; 2783: 25-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478224

RESUMO

Perivascular cells represent an in vivo counterpart of mesenchymal stromal/stem cells that populate the outer layer of blood vessels. Pericytes in capillaries and microvessels and adventitial cells of large arteries and veins give rise to stem/progenitor cells when isolated and cultured in vitro. These cells have been considered candidate cell types for cell therapy. Adipose tissue, being highly vascularized, dispensable, and easily accessed, is a viable option to obtain perivascular cells for use in research and in clinical trials. Here, we describe our established protocol to extract perivascular cells from human fat through fluorescence-activated cell sorting, which allows for the isolation of defined populations of progenitor cells with high reproducibility.


Assuntos
Células-Tronco Mesenquimais , Humanos , Citometria de Fluxo , Reprodutibilidade dos Testes , Células-Tronco Mesenquimais/metabolismo , Pericitos/metabolismo , Tecido Adiposo , Diferenciação Celular
3.
Stem Cells Transl Med ; 12(7): 474-484, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261440

RESUMO

Innate mesenchymal stem cells exhibiting multilineage differentiation and tissue (re)generative-or pathogenic-properties reside in perivascular niches. Subsets of these progenitors are committed to either osteo-, adipo-, or fibrogenesis, suggesting the existence of a developmental organization in blood vessel walls. We evaluated herein the activity of aldehyde dehydrogenase, a family of enzymes catalyzing the oxidation of aldehydes into carboxylic acids and a reported biomarker of normal and malignant stem cells, within human adipose tissue perivascular areas. A progression of ALDHLow to ALDHHigh CD34+ cells was identified in the tunica adventitia. Mesenchymal stem cell potential was confined to ALDHHigh cells, as assessed by proliferation and multilineage differentiation in vitro of cells sorted by flow cytometry with a fluorescent ALDH substrate. RNA sequencing confirmed and validated that ALDHHigh cells have a progenitor cell phenotype and provided evidence that the main isoform in this fraction is ALDH1A1, which was confirmed by immunohistochemistry. This demonstrates that ALDH activity, which marks hematopoietic progenitors and stem cells in diverse malignant tumors, also typifies native, blood vessel resident mesenchymal stem cells.


Assuntos
Aldeído Desidrogenase , Células-Tronco Mesenquimais , Humanos , Células-Tronco , Diferenciação Celular , Citometria de Fluxo
4.
Stem Cells ; 41(9): 862-876, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317792

RESUMO

Numerous intrinsic factors regulate mesenchymal progenitor commitment to a specific cell fate, such as osteogenic or adipogenic lineages. Identification and modulation of novel intrinsic regulatory factors represent an opportunity to harness the regenerative potential of mesenchymal progenitors. In the present study, the transcription factor (TF) ZIC1 was identified to be differentially expressed among adipose compared with skeletal-derived mesenchymal progenitor cells. We observed that ZIC1 overexpression in human mesenchymal progenitors promotes osteogenesis and prevents adipogenesis. ZIC1 knockdown demonstrated the converse effects on cell differentiation. ZIC1 misexpression was associated with altered Hedgehog signaling, and the Hedgehog antagonist cyclopamine reversed the osteo/adipogenic differentiation alterations associated with ZIC1 overexpression. Finally, human mesenchymal progenitor cells with or without ZIC1 overexpression were implanted in an ossicle assay in NOD-SCID gamma mice. ZIC1 overexpression led to significantly increased ossicle formation in comparison to the control, as assessed by radiographic and histologic measures. Together, these data suggest that ZIC1 represents a TF at the center of osteo/adipogenic cell fate determinations-findings that have relevance in the fields of stem cell biology and therapeutic regenerative medicine.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Adipogenia/genética , Proteínas Hedgehog , Osteogênese/fisiologia , Camundongos Endogâmicos NOD , Camundongos SCID , Diferenciação Celular , Fatores de Transcrição/genética
5.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37219951

RESUMO

Pericytes are multipotent mesenchymal precursor cells that demonstrate tissue-specific properties. In this study, by comparing human adipose tissue- and periosteum-derived pericyte microarrays, we identified T cell lymphoma invasion and metastasis 1 (TIAM1) as a key regulator of cell morphology and differentiation decisions. TIAM1 represented a tissue-specific determinant between predispositions for adipocytic versus osteoblastic differentiation in human adipose tissue-derived pericytes. TIAM1 overexpression promoted an adipogenic phenotype, whereas its downregulation amplified osteogenic differentiation. These results were replicated in vivo, in which TIAM1 misexpression altered bone or adipose tissue generation in an intramuscular xenograft animal model. Changes in pericyte differentiation potential induced by TIAM1 misexpression correlated with actin organization and altered cytoskeletal morphology. Small molecule inhibitors of either small GTPase Rac1 or RhoA/ROCK signaling reversed TIAM1-induced morphology and differentiation in pericytes. In summary, our results demonstrate that TIAM1 regulates the cellular morphology and differentiation potential of human pericytes, representing a molecular switch between osteogenic and adipogenic cell fates.


Assuntos
Actinas , Pericitos , Animais , Humanos , Fatores de Troca do Nucleotídeo Guanina/genética , Osteogênese , Diferenciação Celular , Tecido Adiposo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
7.
Stem Cells Transl Med ; 11(1): 35-43, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641167

RESUMO

The vascular wall is comprised of distinct layers controlling angiogenesis, blood flow, vessel anchorage within organs, and cell and molecule transit between blood and tissues. Moreover, some blood vessels are home to essential stem-like cells, a classic example being the existence in the embryo of hemogenic endothelial cells at the origin of definitive hematopoiesis. In recent years, microvascular pericytes and adventitial perivascular cells were observed to include multi-lineage progenitor cells involved not only in organ turnover and regeneration but also in pathologic remodeling, including fibrosis and atherosclerosis. These perivascular mesodermal elements were identified as native forerunners of mesenchymal stem cells. We have presented in this brief review our current knowledge on vessel wall-associated tissue remodeling cells with respect to discriminating phenotypes, functional diversity in health and disease, and potential therapeutic interest.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco de Sangue Periférico , Células Endoteliais , Humanos , Células-Tronco Mesenquimais/fisiologia , Pericitos , Células-Tronco/fisiologia
8.
Stem Cells ; 39(11): 1427-1434, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34252260

RESUMO

Mesenchymal progenitor cells are broadly distributed across perivascular niches-an observation conserved between species. One common histologic zone with a high frequency of mesenchymal progenitor cells within mammalian tissues is the tunica adventitia, the outer layer of blood vessel walls populated by cells with a fibroblastic morphology. The diversity and functions of (re)generative cells present in this outermost perivascular niche are under intense investigation; we have reviewed herein our current knowledge of adventitial cell potential with a somewhat narrow focus on bone formation. Antigens of interest to functionally segregate adventicytes are discussed, including CD10, CD107a, aldehyde dehydrogenase isoforms, and CD140a, among others. Purified adventicytes (such as CD10+ , CD107alow , and CD140a+ cells) have stronger osteogenic potential and promote bone formation in vivo. Recent bone tissue engineering applications of adventitial cells are also presented. A better understanding of perivascular progenitor cell subsets may represent a beneficial advance for future efforts in tissue repair and bioengineering.


Assuntos
Células-Tronco Mesenquimais , Pericitos , Animais , Diferenciação Celular , Mamíferos , Osteogênese , Engenharia Tecidual , Cicatrização
9.
Stem Cells Transl Med ; 10(8): 1232-1248, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33951342

RESUMO

The renal mesenchyme contains heterogeneous cells, including interstitial fibroblasts and pericytes, with key roles in wound healing. Although healing is impaired in aged kidneys, the effect of age and injury on the mesenchyme remains poorly understood. We characterized renal mesenchymal cell heterogeneity in young vs old animals and after ischemia-reperfusion-injury (IRI) using multiplex immunolabeling and single cell transcriptomics. Expression patterns of perivascular cell markers (α-SMA, CD146, NG2, PDGFR-α, and PDGFR-ß) correlated with their interstitial location. PDGFR-α and PDGFR-ß co-expression labeled renal myofibroblasts more efficiently than the current standard marker α-SMA, and CD146 was a superior murine renal pericyte marker. Three renal mesenchymal subtypes; pericytes, fibroblasts, and myofibroblasts, were recapitulated with data from two independently performed single cell transcriptomic analyzes of murine kidneys, the first dataset an aging cohort and the second dataset injured kidneys following IRI. Mesenchymal cells segregated into subtypes with distinct patterns of expression with aging and following injury. Baseline uninjured old kidneys resembled post-ischemic young kidneys, with this phenotype further exaggerated following IRI. These studies demonstrate that age modulates renal perivascular/interstitial cell marker expression and transcriptome at baseline and in response to injury and provide tools for the histological and transcriptomic analysis of renal mesenchymal cells, paving the way for more accurate classification of renal mesenchymal cell heterogeneity and identification of age-specific pathways and targets.


Assuntos
Rim , Traumatismo por Reperfusão , Idoso , Envelhecimento , Animais , Fibrose , Humanos , Isquemia/metabolismo , Rim/patologia , Camundongos , Microvasos , Miofibroblastos/metabolismo , Pericitos/metabolismo , Traumatismo por Reperfusão/metabolismo
10.
Methods Mol Biol ; 2235: 127-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33576974

RESUMO

Human pericytes are a perivascular cell population with mesenchymal stem cell properties, present in all vascularized tissues. Human pericytes have a distinct immunoprofile, which may be leveraged for purposes of cell purification. Adipose tissue is the most commonly used cell source for human pericyte derivation. Pericytes can be isolated by FACS (fluorescence-activated cell sorting), most commonly procured from liposuction aspirates. Pericytes have clonal multilineage differentiation potential, and their potential utility for bone regeneration has been described across multiple animal models. The following review will discuss in vivo methods for assessing the bone-forming potential of purified pericytes. Potential models include (1) mouse intramuscular implantation, (2) mouse calvarial defect implantation, and (3) rat spinal fusion models. In addition, the presented surgical protocols may be used for the in vivo analysis of other osteoprogenitor cell types.


Assuntos
Células da Medula Óssea/metabolismo , Pericitos/metabolismo , Engenharia Tecidual/métodos , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Regeneração Óssea/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Separação Celular/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Osteogênese/fisiologia , Pericitos/citologia , Ratos
11.
Methods Mol Biol ; 2235: 169-180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33576977

RESUMO

Renal pericytes have a critical importance for angiogenesis and vascular remodeling, medullary blood flow regulation, and development of fibrosis. An emerging role for kidney pericytes is their ability to induce renin expression and synthesis. Here, we present methods for purification of human renal pericytes, their primary culture, and differentiation into renin-producing cells. Possible applications of these protocols include investigations into (1) renin cell recruitment mechanisms, (2) modulation of renin expression/secretion by small molecules, and (3) renin expression/secretion in nonrenal pericytes. A potential therapeutic application of this work is the identification of new players regulating the renin-angiotensin system.


Assuntos
Pericitos/metabolismo , Cultura Primária de Células/métodos , Sistema Renina-Angiotensina/fisiologia , Angiotensinas/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Humanos , Rim/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos
12.
Biomaterials ; 268: 120594, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33387754

RESUMO

Blood perfusion of grafted tissue constructs is a hindrance to the success of stem cell-based therapies by limiting cell survival and tissue regeneration. Implantation of a pre-vascularized network engineered in vitro has thus emerged as a promising strategy for promoting blood supply deep into the construct, relying on inosculation with the host vasculature. We aimed to fabricate in vitro tissue constructs with mature microvascular networks, displaying perivascular recruitment and basement membrane, taking advantage of the angiogenic properties of dental pulp stem cells and self-assembly of endothelial cells into capillaries. Using digital scanned light-sheet microscopy, we characterized the generation of dense microvascular networks in collagen hydrogels and established parameters for quantification of perivascular recruitment. We also performed original time-lapse analysis of stem cell recruitment. These experiments demonstrated that perivascular recruitment of dental pulp stem cells is driven by PDGF-BB. Recruited stem cells participated in deposition of vascular basement membrane and vessel maturation. Mature microvascular networks thus generated were then compared to those lacking perivascular coverage generated using stem cell conditioned medium. Implantation in athymic nude mice demonstrated that in vitro maturation of microvascular networks improved blood perfusion and cell survival within the construct. Taken together, these data demonstrate the strong potential of in vitro production of mature microvasculature for improving cell-based therapies.


Assuntos
Células-Tronco Mesenquimais , Animais , Células Endoteliais , Camundongos , Camundongos Nus , Neovascularização Fisiológica , Perfusão , Engenharia Tecidual
13.
J Orthop Res ; 39(11): 2388-2397, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33512030

RESUMO

Intra-articular injection of mesenchymal stem cells has shown benefit for the treatment of osteoarthritis (OA). However, mesenchymal stem/stromal cells at the origin of these clinical results are heterogenous cell populations with limited cellular characterization. Here, two transgenic reporter mice were used to examine the differential effects of two precisely defined perivascular cell populations (Pdgfrα+ and Pdgfrß+ cells) from white adipose tissue for alleviation of OA. Perivascular mesenchymal cells were isolated from transgenic Pdgfrα-and Pdgfrß-CreERT2 reporter animals and delivered as a one-time intra-articular dose to C57BL/6J mice after destabilization of the medial meniscus (DMM). Both Pdgfrα+ and Pdgfrß+ cell preparations improved metrics of cartilage degradation and reduced markers of chondrocyte hypertrophy. While some similarities in cell distribution were identified within the synovial and perivascular spaces, injected Pdgfrα+ cells remained in the superficial layers of articular cartilage, while Pdgfrß+ cells were more widely dispersed. Pdgfrß+ cell therapy prevented subchondral sclerosis induced by DMM, while Pdgfrα+ cell therapy had no effect. In summary, while both cell therapies showed beneficial effects in the DMM model, important differences in cell incorporation, persistence, and subchondral sclerosis were identified.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/patologia , Terapia Baseada em Transplante de Células e Tecidos , Modelos Animais de Doenças , Injeções Intra-Articulares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoartrite/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Esclerose/metabolismo , Esclerose/patologia
14.
Elife ; 92020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33044169

RESUMO

Tissue resident mesenchymal stem/stromal cells (MSCs) occupy perivascular spaces. Profiling human adipose perivascular mesenchyme with antibody arrays identified 16 novel surface antigens, including endolysosomal protein CD107a. Surface CD107a expression segregates MSCs into functionally distinct subsets. In culture, CD107alow cells demonstrate high colony formation, osteoprogenitor cell frequency, and osteogenic potential. Conversely, CD107ahigh cells include almost exclusively adipocyte progenitor cells. Accordingly, human CD107alow cells drove dramatic bone formation after intramuscular transplantation in mice, and induced spine fusion in rats, whereas CD107ahigh cells did not. CD107a protein trafficking to the cell surface is associated with exocytosis during early adipogenic differentiation. RNA sequencing also suggested that CD107alow cells are precursors of CD107ahigh cells. These results document the molecular and functional diversity of perivascular regenerative cells, and show that relocation to cell surface of a lysosomal protein marks the transition from osteo- to adipogenic potential in native human MSCs, a population of substantial therapeutic interest.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Proteína 1 de Membrana Associada ao Lisossomo/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Adipócitos/metabolismo , Animais , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos , Ratos Nus , Células-Tronco/metabolismo
15.
Stem Cells Transl Med ; 9(12): 1617-1630, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32697440

RESUMO

The vascular wall stores mesenchymal progenitor cells which are able to induce bone regeneration, via direct and paracrine mechanisms. Although much is known regarding perivascular cell regulation of osteoblasts, their regulation of osteoclasts, and by extension utility in states of high bone resorption, is not known. Here, human perivascular stem cells (PSCs) were used as a means to prevent autograft resorption in a gonadectomy-induced osteoporotic spine fusion model. Furthermore, the paracrine regulation by PSCs of osteoclast formation was evaluated, using coculture, conditioned medium, and purified extracellular vesicles. Results showed that PSCs when mixed with autograft bone induce an increase in osteoblast:osteoclast ratio, promote bone matrix formation, and prevent bone graft resorption. The confluence of these factors resulted in high rates of fusion in an ovariectomized rat lumbar spine fusion model. Application of PSCs was superior across metrics to either the use of unpurified, culture-defined adipose-derived stromal cells or autograft bone alone. Under coculture conditions, PSCs negatively regulated osteoclast formation and did so via secreted, nonvesicular paracrine factors. Total RNA sequencing identified secreted factors overexpressed by PSCs which may explain their negative regulation of graft resorption. In summary, PSCs reduce osteoclast formation and prevent bone graft resorption in high turnover states such as gonadectomy-induced osteoporosis.


Assuntos
Reabsorção Óssea/prevenção & controle , Osteoclastos/patologia , Osteoporose/fisiopatologia , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Transcriptoma/fisiologia , Animais , Feminino , Humanos , Ratos , Ratos Nus
16.
Bone Res ; 8(1): 22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509378

RESUMO

Human osteogenic progenitors are not precisely defined, being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells (MSCs). Notably, select human pericytes can develop into bone-forming osteoblasts. Here, we sought to define the differentiation potential of CD146+ human pericytes from skeletal and soft tissue sources, with the underlying goal of defining cell surface markers that typify an osteoblastogenic pericyte. CD146+CD31-CD45- pericytes were derived by fluorescence-activated cell sorting from human periosteum, adipose, or dermal tissue. Periosteal CD146+CD31-CD45- cells retained canonical features of pericytes/MSC. Periosteal pericytes demonstrated a striking tendency to undergo osteoblastogenesis in vitro and skeletogenesis in vivo, while soft tissue pericytes did not readily. Transcriptome analysis revealed higher CXCR4 signaling among periosteal pericytes in comparison to their soft tissue counterparts, and CXCR4 chemical inhibition abrogated ectopic ossification by periosteal pericytes. Conversely, enrichment of CXCR4+ pericytes or stromal cells identified an osteoblastic/non-adipocytic precursor cell. In sum, human skeletal and soft tissue pericytes differ in their basal abilities to form bone. Diversity exists in soft tissue pericytes, however, and CXCR4+ pericytes represent an osteoblastogenic, non-adipocytic cell precursor. Indeed, enrichment for CXCR4-expressing stromal cells is a potential new tactic for skeletal tissue engineering.

17.
Am J Pathol ; 190(9): 1909-1920, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32533926

RESUMO

Perivascular mural cells surround capillaries and microvessels and have diverse regenerative or fibrotic functions after tissue injury. Subsynovial fibrosis is a well-known pathologic feature of osteoarthritis, yet transgenic animals for use in visualizing perivascular cell contribution to fibrosis during arthritic changes have not been developed. Here, inducible Pdgfra-CreERT2 reporter mice were subjected to joint-destabilization surgery to induce arthritic changes, and cell lineage was traced over an 8-week period with a focus on the joint-associated fat pad. Results showed that, at baseline, inducible Pdgfra reporter activity highlighted adventitial and, to a lesser extent, pericytic cells within the infrapatellar fat pad. Joint-destabilization surgery was associated with marked fibrosis of the infrapatellar fat pad, accompanied by an expansion of perivascular Pdgfra-expressing cellular descendants, many of which adopted α-smooth muscle actin expression. Gene expression analysis of microdissected infrapatellar fat pad confirmed enrichment in membrane-bound green fluorescent protein/Pdgfra-expressing cells, along with a gene signature that corresponded with injury-associated fibro-adipogenic progenitors. Our results highlight dynamic changes in joint-associated perivascular fibro-adipogenic progenitors during osteoarthritis.


Assuntos
Adipócitos/patologia , Fibroblastos/patologia , Osteoartrite/patologia , Tecido Adiposo/patologia , Animais , Linhagem da Célula , Articulação do Joelho/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco
18.
Stem Cells Dev ; 29(15): 1007-1015, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460636

RESUMO

Adipose-derived stem/stromal cells (ASCs) have been previously used for bone repair. However, significant cell heterogeneity exists within the ASC population, which has the potential to result in unreliable bone tissue formation and/or low efficacy. Although the use of cell sorting to lower cell heterogeneity is one method to improve bone formation, this is a technically sophisticated and costly process. In this study, we tried to find a simpler and more deployable solution-blocking antiosteogenic molecule Dickkopf-1 (DKK1) to improve osteogenic differentiation. Human adipose-derived stem cells were derived from = 5 samples of human lipoaspirate. In vitro, anti-DKK1 treatment, but not anti-sclerostin (SOST), promoted ASC osteogenic differentiation, assessed by alizarin red staining and real-time polymerase chain reaction (qPCR). Increased canonical Wnt signaling was confirmed after anti-DKK1 treatment. Expression levels of DKK1 peaked during early osteogenic differentiation (day 3). Concordantly, anti-DKK1 supplemented early (day 3 or before), but not later (day 7) during osteogenic differentiation positively regulated osteoblast formation. Finally, anti-DKK1 led to increased transcript abundance of the Wnt inhibitor SOST, potentially representing a compensatory cellular mechanism. In sum, DKK1 represents a targetable "molecular brake" on the osteogenic differentiation of human ASC. Moreover, release of this brake by neutralizing anti-DKK1 antibody treatment at least partially rescues the poor bone-forming efficacy of ASC.


Assuntos
Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Regulação da Expressão Gênica , Humanos , Testes de Neutralização , Fatores de Tempo , Via de Sinalização Wnt/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-32185170

RESUMO

Mesenchymal stem cells are culture-derived mesodermal progenitors isolatable from all vascularized tissues. In spite of multiple fundamental, pre-clinical and clinical studies, the native identity and role in tissue repair of MSCs have long remained elusive, with MSC selection in vitro from total cell suspensions essentially unchanged as a mere primary culture for half a century. Recent investigations have helped understand the tissue origin of these progenitor cells, and uncover alternative effects of MSCs on tissue healing via growth factor secretion and interaction with the immune system. In this review, we describe current trends in MSC biology and discuss how these may improve the use of these therapeutic cells in tissue engineering and regenerative medicine.

20.
J Orthop Res ; 38(11): 2484-2494, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32134140

RESUMO

Pericytes ubiquitously surround capillaries and microvessels within vascularized tissues and have diverse functions after tissue injury. In addition to regulation of angiogenesis and tissue regeneration after injury, pericytes also contribute to organ fibrosis. Destabilization of the medial meniscus (DMM) phenocopies post-traumatic osteoarthritis, yet little is known regarding the impact of DMM surgery on knee joint-associated pericytes and their cellular descendants. Here, inducible platelet-derived growth factor receptor-ß (PDGFRß)-CreERT2 reporter mice were subjected to DMM surgery, and lineage tracing studies performed over an 8-week period. Results showed that at baseline PDGFRß reporter activity highlights abluminal perivascular cells within synovial and infrapatellar fat pad (IFP) tissues. DMM induces a temporospatially patterned increase in vascular density within synovial and subsynovial tissues. Marked vasculogenesis within IFP was accompanied by expansion of PDGFRß reporter+ perivascular cell numbers, detachment of mGFP+ descendants from vessel walls, and aberrant adoption of myofibroblastic markers among mGFP+ cells including α-SMA, ED-A, and TGF-ß1. At later timepoints, fibrotic changes and vascular maturation occurred within subsynovial tissues, with the redistribution of PDGFRß+ cellular descendants back to their perivascular niche. In sum, PDGFRß lineage tracing allows for tracing of perivascular cell fate within the diarthrodial joint. Further, destabilization of the joint induces vascular and fibrogenic changes of the IFP accompanied by perivascular to myofibroblast transdifferentiation.


Assuntos
Artrite Experimental/patologia , Transdiferenciação Celular , Articulações/patologia , Miofibroblastos/citologia , Osteoartrite/patologia , Pericitos/fisiologia , Animais , Linhagem da Célula , Feminino , Fibrose , Genes Reporter , Articulações/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...