RESUMO
Since epidemiological cutoff values (ECVs) using CLSI MICs from multiple laboratories are not available for Candida spp. and the echinocandins, we established ECVs for anidulafungin and micafungin on the basis of wild-type (WT) MIC distributions (for organisms in a species-drug combination with no detectable acquired resistance mechanisms) for 8,210 Candida albicans, 3,102 C. glabrata, 3,976 C. parapsilosis, 2,042 C. tropicalis, 617 C. krusei, 258 C. lusitaniae, 234 C. guilliermondii, and 131 C. dubliniensis isolates. CLSI broth microdilution MIC data gathered from 15 different laboratories in Canada, Europe, Mexico, Peru, and the United States were aggregated to statistically define ECVs. ECVs encompassing 97.5% of the statistically modeled population for anidulafungin and micafungin were, respectively, 0.12 and 0.03 µg/ml for C. albicans, 0.12 and 0.03 µg/ml for C. glabrata, 8 and 4 µg/ml for C. parapsilosis, 0.12 and 0.06 µg/ml for C. tropicalis, 0.25 and 0.25 µg/ml for C. krusei, 1 and 0.5 µg/ml for C. lusitaniae, 8 and 2 µg/ml for C. guilliermondii, and 0.12 and 0.12 µg/ml for C. dubliniensis. Previously reported single and multicenter ECVs defined in the present study were quite similar or within 1 2-fold dilution of each other. For a collection of 230 WT isolates (no fks mutations) and 51 isolates with fks mutations, the species-specific ECVs for anidulafungin and micafungin correctly classified 47 (92.2%) and 51 (100%) of the fks mutants, respectively, as non-WT strains. These ECVs may aid in detecting non-WT isolates with reduced susceptibility to anidulafungin and micafungin due to fks mutations.
Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Lipopeptídeos/farmacologia , Anidulafungina , Candida/classificação , Candida/genética , Candida/isolamento & purificação , Candidíase/epidemiologia , Candidíase/microbiologia , Europa (Continente)/epidemiologia , Expressão Gênica , Humanos , Micafungina , Testes de Sensibilidade Microbiana , Mutação , América do Norte/epidemiologia , América do Sul/epidemiologiaRESUMO
Although Clinical and Laboratory Standards Institute (CLSI) clinical breakpoints (CBPs) are available for interpreting echinocandin MICs for Candida spp., epidemiologic cutoff values (ECVs) based on collective MIC data from multiple laboratories have not been defined. While collating CLSI caspofungin MICs for 145 to 11,550 Candida isolates from 17 laboratories (Brazil, Canada, Europe, Mexico, Peru, and the United States), we observed an extraordinary amount of modal variability (wide ranges) among laboratories as well as truncated and bimodal MIC distributions. The species-specific modes across different laboratories ranged from 0.016 to 0.5 µg/ml for C. albicans and C. tropicalis, 0.031 to 0.5 µg/ml for C. glabrata, and 0.063 to 1 µg/ml for C. krusei. Variability was also similar among MIC distributions for C. dubliniensis and C. lusitaniae. The exceptions were C. parapsilosis and C. guilliermondii MIC distributions, where most modes were within one 2-fold dilution of each other. These findings were consistent with available data from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (403 to 2,556 MICs) for C. albicans, C. glabrata, C. krusei, and C. tropicalis. Although many factors (caspofungin powder source, stock solution solvent, powder storage time length and temperature, and MIC determination testing parameters) were examined as a potential cause of such unprecedented variability, a single specific cause was not identified. Therefore, it seems highly likely that the use of the CLSI species-specific caspofungin CBPs could lead to reporting an excessive number of wild-type (WT) isolates (e.g., C. glabrata and C. krusei) as either non-WT or resistant isolates. Until this problem is resolved, routine testing or reporting of CLSI caspofungin MICs for Candida is not recommended; micafungin or anidulafungin data could be used instead.
Assuntos
Antifúngicos/uso terapêutico , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Equinocandinas/uso terapêutico , Anidulafungina , Candida/crescimento & desenvolvimento , Candida/isolamento & purificação , Candidíase/microbiologia , Caspofungina , Farmacorresistência Fúngica , Europa (Continente) , Humanos , Lipopeptídeos/uso terapêutico , Micafungina , Testes de Sensibilidade Microbiana/normas , Testes de Sensibilidade Microbiana/estatística & dados numéricos , América do Norte , Variações Dependentes do Observador , América do Sul , Especificidade da EspécieRESUMO
Epidemiological cutoff values (ECVs) for the Cryptococcus neoformans-Cryptococcus gattii species complex versus fluconazole, itraconazole, posaconazole, and voriconazole are not available. We established ECVs for these species and agents based on wild-type (WT) MIC distributions. A total of 2,985 to 5,733 CLSI MICs for C. neoformans (including isolates of molecular type VNI [MICs for 759 to 1,137 isolates] and VNII, VNIII, and VNIV [MICs for 24 to 57 isolates]) and 705 to 975 MICs for C. gattii (including 42 to 260 for VGI, VGII, VGIII, and VGIV isolates) were gathered in 15 to 24 laboratories (Europe, United States, Argentina, Australia, Brazil, Canada, Cuba, India, Mexico, and South Africa) and were aggregated for analysis. Additionally, 220 to 359 MICs measured using CLSI yeast nitrogen base (YNB) medium instead of CLSI RPMI medium for C. neoformans were evaluated. CLSI RPMI medium ECVs for distributions originating from at least three laboratories, which included ≥95% of the modeled WT population, were as follows: fluconazole, 8 µg/ml (VNI, C. gattii nontyped, VGI, VGIIa, and VGIII), 16 µg/ml (C. neoformans nontyped, VNIII, and VGIV), and 32 µg/ml (VGII); itraconazole, 0.25 µg/ml (VNI), 0.5 µg/ml (C. neoformans and C. gattii nontyped and VGI to VGIII), and 1 µg/ml (VGIV); posaconazole, 0.25 µg/ml (C. neoformans nontyped and VNI) and 0.5 µg/ml (C. gattii nontyped and VGI); and voriconazole, 0.12 µg/ml (VNIV), 0.25 µg/ml (C. neoformans and C. gattii nontyped, VNI, VNIII, VGII, and VGIIa,), and 0.5 µg/ml (VGI). The number of laboratories contributing data for other molecular types was too low to ascertain that the differences were due to factors other than assay variation. In the absence of clinical breakpoints, our ECVs may aid in the detection of isolates with acquired resistance mechanisms and should be listed in the revised CLSI M27-A3 and CLSI M27-S3 documents.
Assuntos
Antifúngicos/uso terapêutico , Criptococose/tratamento farmacológico , Criptococose/epidemiologia , Cryptococcus gattii/efeitos dos fármacos , Fluconazol/uso terapêutico , Itraconazol/uso terapêutico , Pirimidinas/uso terapêutico , Triazóis/uso terapêutico , Antifúngicos/farmacologia , Austrália/epidemiologia , Criptococose/microbiologia , Cryptococcus gattii/crescimento & desenvolvimento , Cryptococcus gattii/isolamento & purificação , Farmacorresistência Fúngica/efeitos dos fármacos , Europa (Continente)/epidemiologia , Fluconazol/farmacologia , Humanos , Índia/epidemiologia , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , América do Norte/epidemiologia , Pirimidinas/farmacologia , África do Sul/epidemiologia , América do Sul/epidemiologia , Triazóis/farmacologia , VoriconazolRESUMO
Clinical breakpoints (CBPs) and epidemiological cutoff values (ECVs) have been established for several Candida spp. and the newer triazoles and echinocandins but are not yet available for older antifungal agents, such as amphotericin B, flucytosine, or itraconazole. We determined species-specific ECVs for amphotericin B (AMB), flucytosine (FC) and itraconazole (ITR) for eight Candida spp. (30,221 strains) using isolates from 16 different laboratories in Brazil, Canada, Europe, and the United States, all tested by the CLSI reference microdilution method. The calculated 24- and 48-h ECVs expressed in µg/ml (and the percentages of isolates that had MICs less than or equal to the ECV) for AMB, FC, and ITR, respectively, were 2 (99.8)/2 (99.2), 0.5 (94.2)/1 (91.4), and 0.12 (95.0)/0.12 (92.9) for C. albicans; 2 (99.6)/2 (98.7), 0.5 (98.0)/0.5 (97.5), and 2 (95.2)/4 (93.5) for C. glabrata; 2 (99.7)/2 (97.3), 0.5 (98.7)/0.5 (97.8), and 05. (99.7)/0.5 (98.5) for C. parapsilosis; 2 (99.8)/2 (99.2), 0.5 (93.0)/1 (90.5), and 0.5 (97.8)/0.5 (93.9) for C. tropicalis; 2 (99.3)/4 (100.0), 32 (99.4)/32 (99.3), and 1 (99.0)/2 (100.0) for C. krusei; 2 (100.0)/4 (100.0), 0.5 (95.3)/1 (92.9), and 0.5 (95.8)/0.5 (98.1) for C. lusitaniae; -/2 (100.0), 0.5 (98.8)/0.5 (97.7), and 0.25 (97.6)/0.25 (96.9) for C. dubliniensis; and 2 (100.0)/2 (100.0), 1 (92.7)/-, and 1 (100.0)/2 (100.0) for C. guilliermondii. In the absence of species-specific CBP values, these wild-type (WT) MIC distributions and ECVs will be useful for monitoring the emergence of reduced susceptibility to these well-established antifungal agents.