Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Front Immunol ; 14: 1168444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153618

RESUMO

The ErbB family of receptor tyrosine kinases is a primary target for small molecules and antibodies for pancreatic cancer treatment. Nonetheless, the current treatments for this tumor are not optimal due to lack of efficacy, resistance, or toxicity. Here, using the novel BiXAb™ tetravalent format platform, we generated bispecific antibodies against EGFR, HER2, or HER3 by considering rational epitope combinations. We then screened these bispecific antibodies and compared them with the parental single antibodies and antibody pair combinations. The screen readouts included measuring binding to the cognate receptors (mono and bispecificity), intracellular phosphorylation signaling, cell proliferation, apoptosis and receptor expression, and also immune system engagement assays (antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity). Among the 30 BiXAbs™ tested, we selected 3Patri-1Cetu-Fc, 3Patri-1Matu-Fc and 3Patri-2Trastu-Fc as lead candidates. The in vivo testing of these three highly efficient bispecific antibodies against EGFR and HER2 or HER3 in pre-clinical mouse models of pancreatic cancer showed deep antibody penetration in these dense tumors and robust tumor growth reduction. Application of such semi-rational/semi-empirical approach, which includes various immunological assays to compare pre-selected antibodies and their combinations with bispecific antibodies, represents the first attempt to identify potent bispecific antibodies against ErbB family members in pancreatic cancer.


Assuntos
Anticorpos Biespecíficos , Neoplasias Pancreáticas , Animais , Camundongos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
2.
JAMA Netw Open ; 6(1): e2252885, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36705924

RESUMO

Importance: Localization of subcentimeter ground glass opacities during minimally invasive thoracoscopic lung cancer resections is a significant challenge in thoracic oncology. Intraoperative molecular imaging has emerged as a potential solution, but the availability of suitable fluorescence agents is a limiting factor. Objective: To evaluate the suitability of SGM-101, a carcinoembryonic antigen-related cell adhesion molecule type 5 (CEACAM5) receptor-targeted near-infrared fluorochrome, for molecular imaging-guided lung cancer resections, because glycoprotein is expressed in more than 80% of adenocarcinomas. Design, Setting, and Participants: For this nonrandomized, proof-of-principal, phase 1 controlled trial, patients were divided into 2 groups between August 1, 2020, and January 31, 2022. Patients with known CEACAM5-positive gastrointestinal tumors suggestive of lung metastasis were selected as proof-of-principle positive controls. The investigative group included patients with lung nodules suggestive of primary lung malignant neoplasms. Patients 18 years or older without significant comorbidities that precluded surgical exploration with suspicious pulmonary nodules requiring surgical biopsy were included in the study. Interventions: SGM-101 (10 mg) was infused up to 5 days before index operation, and pulmonary nodules were imaged using a near-infrared camera system with a dedicated thoracoscope. Main Outcomes and Measures: SGM-101 localization to pulmonary nodules and its correlation with CEACAM5 glycoprotein expression by the tumor as quantified by tumor and normal pulmonary parenchymal fluorescence. Results: Ten patients (5 per group; 5 male and 5 female; median [IQR] age, 66 [58-69] years) with 14 total lesions (median [range] lesion size, 0.91 [0.90-2.00] cm) were enrolled in the study. In the control group of 4 patients (1 patient did not undergo surgical resection because of abnormal preoperative cardiac clearance findings that were not deemed related to SGM-101 infusion), the mean (SD) lesion size was 1.33 (0.48) cm, 2 patients had elevated serum CEA markers, and 2 patients had normal serum CEA levels. Of the 4 patients who underwent surgical intervention, those with 2+ and 3+ tissue CEACAM5 expression had excellent tumor fluorescence, with a mean (SD) tumor to background ratio of 3.11 (0.45). In the patient cohort, the mean (SD) lesion size was 0.68 (0.22) cm, and no elevations in serum CEA levels were found. Lack of SGM-101 fluorescence was associated with benign lesions and with lack of CEACAM5 staining. Conclusions and Relevance: This in-human proof-of-principle nonrandomized controlled trial demonstrated SGM-101 localization to CEACAM5-positive tumors with the detection of real-time near-infrared fluorescence in situ, ex vivo, and by immunofluorescence microscopy. These findings suggest that SGM-101 is a safe, receptor-specific, and feasible intraoperative molecular imaging fluorochrome that should be further evaluated in randomized clinical trials. Trial Registration: ClinicalTrials.gov identifier: NCT04315467.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Idoso , Feminino , Humanos , Masculino , Antígeno Carcinoembrionário , Corantes Fluorescentes , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Imagem Molecular/métodos , Pessoa de Meia-Idade
3.
Ann Thorac Surg ; 116(3): 631-641, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644263

RESUMO

BACKGROUND: Intraoperative molecular imaging has emerged as a potential tool in addressing challenges faced during lung cancer surgery by localizing small lesions, ensuring negative margins, and identifying synchronous cancers. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) glycoprotein has emerged as a potential target in fluorescent labeling of non-small cell lung cancer given the high antigen density in tumor cells and absence of expression in normal parenchyma. The goal of our study was to determine whether anti-CEACAM5 targeted near-infrared fluorochrome could be a suitable target in non-small cell lung cancer. METHODS: The CEACAM5 expression was evaluated in AB-12 (known negative control), HT29 (known positive control), and H460 (non-small cell lung cancer) cell lines by polymerase chain reaction. SGM-101, a CEACAM5 antibody, coupled with a BM-104 near-infrared fluorescent tracer was evaluated with dose escalation, in vitro cellular localization, and immunofluorescence microscopy. Subsequently, in vivo validation was performed in 52 athymic nude xenografts. RESULTS: Polymerase chain reaction analysis demonstrated 3000x relative expression of CEACAM5 in HT-29 cells compared with AB-12. The H460 cells showed 1000x relative expression compared with AB12 (P < .05). Both HT29 and H460 cells showed tracer internalization with signal to background ratio of 4.5 (SD 0.34) whereas there was minimal uptake by AB12 cells with signal to background ratio 1.1 (SD 0.1; P < .05). There was linear fluorescence increase with increasing tracer dosing in receptor expressing cell lines. In preclinical models, HT-29 and H460 cells lines produced near-infrared fluorescence with average tumor to background ratio of 3.89 (SD 0.25) irrespective of tumor size compared with no fluorescence by AB12 tumors (P < .05). The CEACAM5 expressing tumors had excellent dye uptake compared with AB12 tumors. CONCLUSIONS: CEACAM5 serves as a possible receptor for targeted intraoperative molecular imaging resections in lung cancer. This study sets a path for evaluation of CEACAM5 targets in future clinical trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Moléculas de Adesão Celular , Antígeno Carcinoembrionário/metabolismo , Imagem Molecular , Linhagem Celular Tumoral
4.
Surgery ; 172(4): 1156-1163, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35927078

RESUMO

BACKGROUND: Indocyanine green has been used for fluorescence-guided surgery of liver metastasis and labeling of liver segments. However, indocyanine green is nonspecific, and indocyanine green labeling does not always clearly outline tumor margins. In addition, it is difficult to distinguish between a tumor and its adjacent liver segment colored with indocyanine green alone. In the present study, we performed fluorescence-guided surgery in an orthotopic colon-cancer liver metastasis mouse model by labeling the metastatic liver tumor with an anti-carcinoembryonic antigen fluorescent antibody and with indocyanine green restricted to the adjacent liver segment. METHODS: A liver metastasis model was established with human LS174T colon cancer tumor fragments. To label the tumor, mice received SGM-101, an anti-carcinoembryonic antigen antibody conjugated to a near-infrared fluorophore (700 nm), currently in clinical trials, 3 days before surgery. Indocyanine green (800 nm) was injected after ligation of the tumor-bearing Glissonean pedicle with fluorescence labeling restricted to the liver segment adjacent to the tumor. Bright-light surgery and fluorescence-guided surgery were performed to resect the liver metastasis. To assess recurrence, mice underwent necropsy 3 weeks after surgery and the tumor was weighed. RESULTS: Fluorescence-guided anatomic left lateral lobectomy and fluorescence-guided partial liver resection were both performed with color-coded double labeled imaging. Tumor weight 3 weeks after surgery was significantly lower with fluorescence-guided surgery compared to bright-light surgery (38 ± 57 mg vs 836 ± 668 mg, P = .011) for partial liver resection. CONCLUSION: The present study provides a proof-of-concept that color-coded and double labeling of the tumor and adjacent liver segment has the potential to improve liver metastasectomy.


Assuntos
Neoplasias do Colo , Neoplasias Hepáticas , Animais , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Neoplasias do Colo/cirurgia , Corantes Fluorescentes , Humanos , Verde de Indocianina , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Camundongos , Imagem Óptica/métodos
5.
Cancers (Basel) ; 14(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35565227

RESUMO

Personalized treatment and precision medicine have become the new standard of care in oncology and radiotherapy. Because treatment outcomes have considerably improved over the last few years, permanent side-effects are becoming an increasingly significant issue for cancer survivors. Five to ten percent of patients will develop severe late toxicity after radiotherapy. Identifying these patients before treatment start would allow for treatment adaptation to minimize definitive side effects that could impair their long-term quality of life. Over the last decades, several tests and biomarkers have been developed to identify these patients. However, out of these, only the Radiation-Induced Lymphocyte Apoptosis (RILA) assay has been prospectively validated in multi-center cohorts. This test, based on a simple blood draught, has been shown to be correlated with late radiation-induced toxicity in breast, prostate, cervical and head and neck cancer. It could therefore greatly improve decision making in precision radiation oncology. This literature review summarizes the development and bases of this assay, as well as its clinical results and compares its results to the other available assays.

6.
Cancers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572847

RESUMO

Monoclonal antibodies have revolutionized the treatment of many diseases, but their clinical efficacy remains limited in some other cases. Pre-clinical and clinical trials have shown that combinations of antibodies that bind to the same target (homo-combinations) or to different targets (hetero-combinations) to mimic the polyclonal humoral immune response improve their therapeutic effects in cancer. The approval of the trastuzumab/pertuzumab combination for breast cancer and then of the ipilimumab/nivolumab combination for melanoma opened the way to novel antibody combinations or oligoclonal antibody mixtures as more effective biologics for cancer management. We found more than 300 phase II/III clinical trials on antibody combinations, with/without chemotherapy, radiotherapy, small molecules or vaccines, in the ClinicalTrials.gov database. Such combinations enhance the biological responses and bypass the resistance mechanisms observed with antibody monotherapy. Usually, such antibody combinations are administered sequentially as separate formulations. Combined formulations have also been developed in which separately produced antibodies are mixed before administration or are produced simultaneously in a single cell line or a single batch of different cell lines as a polyclonal master cell bank. The regulation, toxicity and injection sequence of these oligoclonal antibody mixtures still need to be addressed in order to optimize their delivery and their therapeutic effects.

7.
Int J Oncol ; 59(1)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34013359

RESUMO

Anti­Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets in ovarian carcinoma. Conversely, the role of the three AMH type I receptors (AMHRIs), namely activin receptor­like kinase (ALK)2, ALK3 and ALK6, in ovarian cancer remains to be clarified. To determine the respective roles of these three AMHRIs, the present study used four ovarian cancer cell lines (COV434­AMHRII, SKOV3­AMHRII, OVCAR8, KGN) and primary cells isolated from tumor ascites from patients with ovarian cancer. The results demonstrated that ALK2 and ALK3 may be the two main AMHRIs involved in AMH signaling at physiological endogenous and supraphysiological exogenous AMH concentrations, respectively. Supraphysiological AMH concentrations (25 nM recombinant AMH) were associated with apoptosis in all four cell lines and decreased clonogenic survival in COV434­AMHRII and SKOV3­AMHRII cells. These biological effects were induced via ALK3 recruitment by AMHRII, as ALK3­AMHRII dimerization was favored at increasing AMH concentrations. By contrast, ALK2 was associated with AMHRII at physiological endogenous concentrations of AMH (10 pM). Based on these results, tetravalent IgG1­like bispecific antibodies (BsAbs) against AMHRII and ALK2, and against AMHRII and ALK3 were designed and evaluated. In vivo, COV434­AMHRII tumor cell xenograft growth was significantly reduced in all BsAb­treated groups compared with that in the vehicle group (P=0.018 for BsAb 12G4­3D7; P=0.001 for all other BsAbs). However, the growth of COV434­AMHRII tumor cell xenografts was slower in mice treated with the anti­AMRII­ALK2 BsAb 12G4­2F9 compared with that in animals that received a control BsAb that targeted AMHRII and CD5 (P=0.048). These results provide new insights into type I receptor specificity in AMH signaling pathways and may lead to an innovative therapeutic approach to modulate AMH signaling using anti­AMHRII/anti­AMHRI BsAbs.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Hormônio Antimülleriano/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Receptores de Ativinas Tipo I/imunologia , Animais , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/farmacologia , Anticorpos Biespecíficos/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Fosforilação , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
MAbs ; 13(1): 1914883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33876707

RESUMO

Chemoresistance, particularly to gemcitabine, is a major challenge in pancreatic cancer. The epidermal growth factor receptor (EGFR) and human epidermal growth factor receptors 2 and 3 (HER2, HER3) are expressed in many tumors, and they are relevant therapeutic targets due to their synergistic interaction to promote tumor aggressiveness and therapeutic resistance. Cocktails of antibodies directed against different targets are a promising strategy to overcome these processes. Here, we found by immunohistochemistry that these three receptors were co-expressed in 11% of patients with pancreatic adenocarcinoma. We then developed gemcitabine-resistant pancreatic cancer cell models (SW-1990-GR and BxPC3-GR) and one patient-derived xenograft (PDX2846-GR) by successive exposure to increasing doses of gemcitabine. We showed that expression of EGFR, HER2 and HER3 was increased in these gemcitabine-resistant pancreatic cancer models, and that an antibody mixture against all three receptors inhibited tumor growth in mice and downregulated HER receptors. Finally, we demonstrated that the Pan-HER and gemcitabine combination has an additive effect in vitro and in mice xenografted with the gemcitabine-sensitive or resistant pancreatic models. The mixture of anti-EGFR, HER2 and HER3 antibodies is a good candidate therapeutic approach for gemcitabine-sensitive and -resistant pancreatic cancer.


Assuntos
Anticorpos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos Nus , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/imunologia , Receptor ErbB-3/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
9.
Sci Rep ; 11(1): 2231, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500516

RESUMO

In ovarian carcinoma, anti-Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets. Here, AMH dose-dependent effect on signaling and proliferation was analyzed in four ovarian cancer cell lines, including sex cord stromal/granulosa cell tumors and high grade serous adenocarcinomas (COV434-AMHRII, SKOV3-AMHRII, OVCAR8 and KGN). As previously shown, incubation with exogenous AMH at concentrations above the physiological range (12.5-25 nM) decreased cell viability. Conversely, physiological concentrations of endogenous AMH improved cancer cell viability. Partial AMH depletion by siRNAs was sufficient to reduce cell viability in all four cell lines, by 20% (OVCAR8 cells) to 40% (COV434-AMHRII cells). In the presence of AMH concentrations within the physiological range (5 to 15 pM), the newly developed anti-AMH B10 antibody decreased by 25% (OVCAR8) to 50% (KGN) cell viability at concentrations ranging between 3 and 333 nM. At 70 nM, B10 reduced clonogenic survival by 57.5%, 57.1%, 64.7% and 37.5% in COV434-AMHRII, SKOV3-AMHRII, OVCAR8 and KGN cells, respectively. In the four cell lines, B10 reduced AKT phosphorylation, and increased PARP and caspase 3 cleavage. These results were confirmed in ovarian cancer cells isolated from patients' ascites, demonstrating the translational potential of these results. Furthermore, B10 reduced COV434-MISRII tumor growth in vivo and significantly enhanced the median survival time compared with vehicle (69 vs 60 days; p = 0.0173). Our data provide evidence for a novel pro-survival autocrine role of AMH in the context of ovarian cancer, which was targeted therapeutically using an anti-AMH antibody to successfully repress tumor growth.


Assuntos
Hormônio Antimülleriano/metabolismo , Neoplasias Ovarianas/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Feminino , Humanos , Ovário/metabolismo , Fosforilação/fisiologia
10.
Clin Cancer Res ; 26(22): 5934-5942, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32900795

RESUMO

PURPOSE: Intraoperative image guidance may aid in clinical decision-making during surgical treatment of colorectal cancer. We developed the dual-labeled carcinoembryonic antigen-targeting tracer, [111In]In-DTPA-SGM-101, for pre- and intraoperative imaging of colorectal cancer. Subsequently, we investigated the tracer in preclinical biodistribution and multimodal image-guided surgery studies, and assessed the clinical feasibility on patient-derived colorectal cancer samples, paving the way for rapid clinical translation. EXPERIMENTAL DESIGN: SGM-101 was conjugated with p-isothiocyanatobenzyl-diethylenetriaminepentaacetic acid (DTPA) and labeled with Indium-111 (111In). The biodistribution of 3, 10, 30, and 100 µg [111In]In-DTPA-SGM-101 was assessed in a dose escalation study in BALB/c nude mice with subcutaneous LS174T human colonic tumors, followed by a study to determine the optimal timepoint for imaging. Mice with intraperitoneal LS174T tumors underwent micro-SPECT/CT imaging and fluorescence image-guided resection. In a final translational experiment, we incubated freshly resected human tumor specimens with the tracer and assessed the tumor-to-adjacent tissue ratio of both signals. RESULTS: The optimal protein dose of [111In]In-DTPA-SGM-101 was 30 µg (tumor-to-blood ratio, 5.8 ± 1.1) and the optimal timepoint for imaging was 72 hours after injection (tumor-to-blood ratio, 5.1 ± 1.0). In mice with intraperitoneal tumors, [111In]In-DTPA-SGM-101 enabled preoperative SPECT/CT imaging and fluorescence image-guided resection. After incubation of human tumor samples, overall fluorescence and radiosignal intensities were higher in tumor areas compared with adjacent nontumor tissue (P < 0.001). CONCLUSIONS: [111In]In-DTPA-SGM-101 showed specific accumulation in colorectal tumors, and enabled micro-SPECT/CT imaging and fluorescence image-guided tumor resection. Thus, [111In]In-DTPA-SGM-101 could be a valuable tool for preoperative SPECT/CT imaging and intraoperative radio-guided localization and fluorescence image-guided resection of colorectal cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno Carcinoembrionário/isolamento & purificação , Neoplasias Colorretais/cirurgia , Cirurgia Assistida por Computador/métodos , Animais , Anticorpos Monoclonais/química , Antígeno Carcinoembrionário/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/isolamento & purificação , Xenoenxertos , Humanos , Radioisótopos de Índio/farmacologia , Camundongos , Imagem Óptica/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição Tecidual/efeitos da radiação
11.
Cancer Sci ; 111(7): 2508-2525, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415868

RESUMO

Human epidermal growth factor receptor 4 (HER4) isoforms have oncogenic or tumor suppressor functions depending on their susceptibility to proteolytic cleavage and HER4 intracellular domain (4ICD) translocation. Here, we report that the neuregulin 1 (NRG1) tumor suppressor mechanism through the HER4 JMa/CYT1 isoform can be mimicked by the agonist anti-HER4 Ab C6. Neuregulin 1 induced cleavage of poly(ADP-ribose) polymerase (PARP) and sub-G1 DNA fragmentation, and also reduced the metabolic activity of HER3- /HER4+ cervical (C-33A) and ovarian (COV318) cancer cells. This effect was confirmed in HER4 JMa/CYT1-, but not JMa/CYT2-transfected BT549 triple-negative breast cancer cells. Neuregulin 1 favored 4ICD cleavage and retention in mitochondria in JMa/CYT1-transfected BT549 cells, leading to reactive oxygen species (ROS) production through mitochondrial depolarization. Similarly, the anti-HER4 Ab C6, which binds to a conformational epitope located on a.a. 575-592 and 605-620 of HER4 domain IV, induced 4ICD cleavage and retention in mitochondria, and mimicked NRG1-mediated effects on PARP cleavage, ROS production, and mitochondrial membrane depolarization in cancer cells. In vivo, C6 reduced growth of COV434 and HCC1187 tumor cell xenografts in nude mice. Biasing 4ICD trafficking to mitochondria with anti-HER4 Abs to mimic NRG1 suppressor functions could be an alternative anticancer strategy.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptor ErbB-4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Mapeamento de Epitopos , Humanos , Espaço Intracelular/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neuregulina-1/farmacologia , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-4/imunologia
12.
Int J Radiat Oncol Biol Phys ; 106(5): 1039-1051, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31959545

RESUMO

PURPOSE: The outcome of locally advanced cervical cancer (LACC) is dismal. Biomarkers are needed to individualize treatments and to improve patient outcomes. Here, we investigated whether coexpression of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 3 (HER3) could be an outcome prognostic biomarker, and whether targeting both EGFR and HER3 with a dual antibody (MEHD7945A) enhanced ionizing radiation (IR) efficacy. METHODS AND MATERIALS: Expression of EGFR and HER3 was evaluated by immunohistochemistry in cancer biopsies (n = 72 patients with LACC). The antitumor effects of the MEHD7945A and IR combotherapy were assessed in 2 EGFR- and HER3-positive cervical cancer cell lines (A431 and CaSki) and in A431 cell xenografts. The mechanisms involved in tumor cell radiosensitization were also studied. The interaction of MEHD7945A, IR, and cisplatin was evaluated using dose-response matrix data. RESULTS: EGFR and HER3 were coexpressed in only in 7 of the 22 biopsies of FIGO IVB cervix cancer. The median overall survival was 14.6 months and 23.1 months in patients with FIGO IVB tumors that coexpressed or did not coexpress EGFR and HER3, respectively. In mice xenografted with A431 (squamous cell carcinoma) cells, MEHD7945A significantly increased IR response by reducing tumor growth and increasing cleaved caspase-3 expression. In A431 and CaSki cells, the combotherapy increased DNA damage and cell death, particularly immunogenic cell death, and decreased survival by inhibiting the MAPK and AKT pathways. An additive effect was observed when IR, MEHD7945A, and cisplatin were combined. CONCLUSIONS: Targeting EGFR and HER3 with a specific dual antibody enhanced IR efficacy. These preliminary results and the prognostic value of EGFR and HER3 coexpression should be confirmed in a larger sample.


Assuntos
Receptores ErbB/imunologia , Imunoglobulina G/imunologia , Receptor ErbB-3/imunologia , Neoplasias do Colo do Útero/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/imunologia , Sobrevivência Celular/efeitos da radiação , Transformação Celular Neoplásica , Terapia Combinada , Dano ao DNA , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Imunoglobulina G/uso terapêutico , Camundongos , Pessoa de Meia-Idade , Receptor ErbB-3/metabolismo , Estudos Retrospectivos , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/radioterapia
13.
Br J Cancer ; 122(3): 397-404, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792349

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) has a worse prognosis compared with other breast cancer subtypes, and biomarkers to identify patients at high risk of recurrence are needed. Here, we investigated the expression of human epidermal receptor (HER) family members in TNBC and evaluated their potential as biomarkers of recurrence. METHODS: We developed Time Resolved-Förster Resonance Energy Transfer (TR-FRET) assays to quantify HER1, HER2 and HER3 in formalin-fixed paraffin-embedded (FFPE) tumour tissues. After assessing the performance and precision of our assays, we quantified HER protein expression in 51 TNBC specimens, and investigated the association of their expression with relapse-free survival. RESULTS: The assays were quantitative, accurate, and robust. In TNBC specimens, HER1 levels ranged from ≈4000 to more than 2 million receptors per cell, whereas HER2 levels varied from ≈1000 to 60,000 receptors per cell. HER3 expression was very low (less than 5500 receptors per cell in all samples). Moderate HER2 expression was significantly associated with higher risk of recurrence (HR = 3.93; P = 0.003). CONCLUSIONS: Our TR-FRET assays accurately quantify HER1, HER2 and HER3 in FFPE breast tumour specimens. Moderate HER2 expression may represent a novel prognostic marker in patients with TNBC.


Assuntos
Carcinoma Ductal de Mama/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Receptores ErbB/metabolismo , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Prognóstico
14.
Cell Commun Signal ; 17(1): 106, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443721

RESUMO

BACKGROUND: HER3/ErbB3 receptor deletion or blockade leads to tumor cell apoptosis, whereas its overexpression confers anti-cancer drug resistance through upregulation of protective mechanisms against apoptosis. We produced the anti-HER3 antibody 9F7-F11 that promotes HER3 ubiquitination and degradation via JNK1/2-dependent activation of the E3 ubiquitin ligase ITCH, and that induces apoptosis of cancer cells. Cellular FLICE-like inhibitory protein (c-FLIP) is a key regulator of apoptotic pathways. Here, we wanted to determine the mechanisms underlying the pro-apoptotic effect of 9F7-F11. METHODS: Anti-HER3 antibody-induced apoptosis was assessed by western blot, and by flow cytometry measurement of Annexin V/7-AAD-labelled tumor cells (BxPC3, MDA-MB-468 and DU145 cell lines). c-FLIP/ITCH interaction and subsequent degradation/ubiquitination were investigated by co-immunoprecipitation of ITCH-silenced vs scramble control cells. The relationship between ITCH-mediated c-FLIP degradation and antibody-induced apoptosis was examined by western blot and flow cytometry of tumor cells, after ITCH RNA interference or by pre-treatment with ITCH chemical inhibitor chlorimipramine (CI). RESULTS: Following incubation with 9F7-F11, cancer cell apoptosis occurs through activation of caspase-8, - 9 and - 3 and the subsequent cleavage of poly (ADP-ribose) polymerase (PARP). Moreover we showed that ubiquitination and proteasomal degradation of the anti-apoptotic protein c-FLIP was mediated by USP8-regulated ITCH recruitment. This effect was abrogated by ITCH- and USP8-specific RNA interference (siRNA), or by the ITCH chemical inhibitor CI. Specifically, ITCH silencing or CI blocked 9F7-F11-induced caspase-8-mediated apoptosis of tumor cells, and restored c-FLIP expression. ITCH-silencing or CI concomitantly abrogated HER3-specific antibody-induced apoptosis of Annexin V/7-AAD-labelled BxPC3 cells. 9F7-F11 favored the extrinsic apoptosis pathway by inducing TRAIL-R2/DR5 upregulation and TRAIL expression that promoted the formation of death-inducing signaling complex (DISC), leading to caspase-8-mediated apoptosis. Incubation with 9F7-F11 also induced BID cleavage, BAX upregulation and BIM expression, which initiated the caspase-9/3-mediated mitochondrial death pathway. The anti-HER3 antibody pro-apoptotic effect occurred concomitantly with downregulation of the pro-survival proteins c-IAP2 and XIAP. CONCLUSIONS: The allosteric non-neuregulin competing modulator 9F7-F11, sensitizes tumor cells to DR5/caspase-8-mediated apoptosis through ITCH-dependent downregulation of c-FLIP.


Assuntos
Anticorpos Monoclonais Murinos/metabolismo , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Humanos , Transdução de Sinais
15.
Radiat Oncol ; 14(1): 142, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399108

RESUMO

BACKGROUND: Biomarkers for predicting late normal tissue toxicity to radiotherapy are necessary to personalize treatments and to optimize clinical benefit. Many radiogenomic studies have been published on this topic. Conversely, proteomics approaches are not much developed, despite their advantages. METHODS: We used the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach to analyze differences in protein expression levels in ex-vivo irradiated (8 Gy) T lymphocytes from patients with grade ≥ 2 radiation-induced breast fibrosis (grade ≥ 2 bf+) and patients with grade < 2 bf + after curative intent radiotherapy. Patients were selected from two prospective clinical trials (COHORT and PHRC 2005) and were used as discovery and confirmation cohorts. RESULTS: Among the 1979 quantified proteins, 23 fulfilled our stringent biological criteria. Immunoblotting analysis of four of these candidate proteins (adenylate kinase 2, AK2; annexin A1; heat shock cognate 71 kDa protein; and isocitrate dehydrogenase 2) confirmed AK2 overexpression in 8 Gy-irradiated T lymphocytes from patients with grade ≥ 2 bf + compared with patients with grade < 2 bf+. As these candidate proteins are involved in oxidative stress regulation, we also evaluated radiation-induced reactive oxygen species (ROS) production in peripheral blood mononuclear cells from patients with grade ≥ 2 bf + and grade < 2 bf+. Total ROS level, and especially superoxide anion level, increased upon ex-vivo 8 Gy-irradiation in all patients. Analysis of NADPH oxidases (NOXs), a major source of superoxide ion in the cell, showed a significant increase of NOX4 mRNA and protein levels after irradiation in both patient groups. Conversely, only NOX4 mRNA level was significantly different between groups (grade ≥ 2 bf + and grade < 2 bf+). CONCLUSION: These findings identify AK2 as a potential radiosensitivity candidate biomarker. Overall, our proteomic approach highlights the important role of oxidative stress in late radiation-induced toxicity, and paves the way for additional studies on NOXs and superoxide ion metabolism.


Assuntos
Adenilato Quinase/metabolismo , Biomarcadores/metabolismo , Neoplasias da Mama/radioterapia , Mama/metabolismo , Fibrose/metabolismo , Proteoma/análise , Lesões por Radiação/metabolismo , Radioterapia/efeitos adversos , Mama/efeitos da radiação , Feminino , Fibrose/etiologia , Fibrose/patologia , Humanos , Órgãos em Risco/efeitos da radiação , Prognóstico , Estudos Prospectivos , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Linfócitos T/efeitos da radiação
16.
MAbs ; 11(5): 812-825, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31043141

RESUMO

Monoclonal antibodies (mAbs) have revolutionized the treatment landscape in many disciplines of human medicine. To continue this exciting trend, sustained identification of new, validated and preferably functional targets are needed. However, this is the precise bottleneck in today's development of the next generation of therapeutic mAbs. Failures in translating a target into a successful therapeutic mAb are much more frequent than successes. Labex MAbImprove is a French-led consortium of academic laboratories jointly working on several aspects of the development of next-generation mAbs. The network organizes annual international meetings gathering academia and industry to discuss the different challenges faced in the therapeutic mAbs field. The 2018 symposium (also called AIS2018 and co-organized with MabDesign, the immunotherapy French industrial sector) focused on the discovery and validation of new targets for therapeutic mAbs. Key players from industry and academia outlined a number of exciting contributions, notably dealing with new innovations in the target discovery area, but also lessons learned from failures in the past. This report summarizes the talks presented at the AIS2018. We aim at broad dissemination of the most relevant, unpublished findings presented during the meeting, and hope to inspire all the contributors in this field to take new directions and bring about improvements.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Terapia Combinada , França , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/terapia
17.
Toxicol Rep ; 6: 409-415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080749

RESUMO

The real-time improvement of the intraoperative discrimination between different tissue types (particularly between tumor and adjacent normal tissue) using intraoperative imaging represents a considerable advance for oncology surgeons. However, the development of imaging agents is much slower than that of drug therapies, although surgery represents one of the few curative treatments for many solid tumors. SGM-101 is a recently described, innovative antibody conjugate in which the near-infrared fluorochrome BM-104 is covalently linked to a chimeric monoclonal antibody against carcinoembryonic antigen (CEA). SGM-101 was developed with the goal of providing oncology surgeons with an intraoperative imaging tool that allows the visualization of CEA-overexpressing tumors. This antigen is overexpressed in a wide range of human carcinomas, such as colorectal, gastric, pancreatic, non-small cell lung and breast carcinomas. Here we characterized SGM-101 safety prior to its clinical testing for real-time cancer mapping by oncology surgeons. Safety pharmacology and toxicology studies were performed after intravenous injection of SGM-101 in Wistar rats and in Beagle dogs. SGM-101 metabolism and pharmacokinetics were analyzed in rats and mice. Finally, the potential toxicity of the BM-104 dye and SGM-101 cross-reactivity were assessed in a panel of 42 human tissues. Our pre-clinical toxicology, pharmacology and pharmacokinetic results demonstrated the absence of significant adverse effects of both SGM-101 and BM-104 at doses well above the anticipated maximal human exposure. Taken together, the results of the pharmacology, pharmacokinetic and toxicology studies support the development of SGM-101 as a potentially useful and safe tumor-specific imaging tool that might improve the complete tumor resection rate.

18.
Int J Cancer ; 145(7): 1838-1851, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30882895

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by poor response to chemotherapy and radiotherapy due to the lack of efficient therapeutic tools and early diagnostic markers. We previously generated the nonligand competing anti-HER3 antibody 9F7-F11 that binds to pancreatic tumor cells and induces tumor regression in vivo in experimental models. Here, we asked whether coupling 9F7-F11 with a radiosensitizer, such as monomethylauristatin E (MMAE), by using the antibody-drug conjugate (ADC) technology could improve radiation therapy efficacy in PDAC. We found that the MMAE-based HER3 antibody-drug conjugate (HER3-ADC) was efficiently internalized in tumor cells, increased the fraction of cells arrested in G2/M, which is the most radiosensitive phase of the cell cycle, and promoted programmed cell death of irradiated HER3-positive pancreatic cancer cells (BxPC3 and HPAC cell lines). HER3-ADC decreased the clonogenic survival of irradiated cells by increasing DNA double-strand break formation (based on γH2AX level), and by modulating DNA damage repair. Tumor radiosensitization with HER3-ADC favored the inhibition of the AKT-induced survival pathway, together with more efficient caspase 3/PARP-mediated apoptosis. Incubation with HER3-ADC before irradiation synergistically reduced the phosphorylation of STAT3, which is involved in chemoradiation resistance. In vivo, the combination of HER3-ADC with radiation therapy increased the overall survival of mice harboring BxPC3, HPAC cell xenografts or patient-derived xenografts, and reduced proliferation (KI67-positive cells). Combining auristatin radiosensitizer delivery via an HER3-ADC with radiotherapy is a new promising therapeutic strategy in PDAC.


Assuntos
Carcinoma Ductal Pancreático/terapia , Imunoconjugados/administração & dosagem , Fatores Imunológicos/administração & dosagem , Neoplasias Pancreáticas/terapia , Animais , Anticorpos Monoclonais Murinos/administração & dosagem , Anticorpos Monoclonais Murinos/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quimiorradioterapia , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Fatores Imunológicos/farmacologia , Camundongos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacologia , Neoplasias Pancreáticas/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Fator de Transcrição STAT3/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Immunother Cancer ; 7(1): 29, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717773

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) treatment is currently restricted to chemotherapy. Hence, tumor-specific molecular targets and/or alternative therapeutic strategies for TNBC are urgently needed. Immunotherapy is emerging as an exciting treatment option for TNBC patients. The aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer (BC), is overproduced and hypersecreted by human BC cells. This study explores whether cath-D is a tumor cell-associated extracellular biomarker and a potent target for antibody-based therapy in TNBC. METHODS: Cath-D prognostic value and localization was evaluated by transcriptomics, proteomics and immunohistochemistry in TNBC. First-in-class anti-cath-D human scFv fragments binding to both human and mouse cath-D were generated using phage display and cloned in the human IgG1 λ format (F1 and E2). Anti-cath-D antibody biodistribution, antitumor efficacy and in vivo underlying mechanisms were investigated in TNBC MDA-MB-231 tumor xenografts in nude mice. Antitumor effect was further assessed in TNBC patient-derived xenografts (PDXs). RESULTS: High CTSD mRNA levels correlated with shorter recurrence-free survival in TNBC, and extracellular cath-D was detected in the tumor microenvironment, but not in matched normal breast stroma. Anti-cath-D F1 and E2 antibodies accumulated in TNBC MDA-MB-231 tumor xenografts, inhibited tumor growth and improved mice survival without apparent toxicity. The Fc function of F1, the best antibody candidate, was essential for maximal tumor inhibition in the MDA-MB-231 model. Mechanistically, F1 antitumor response was triggered through natural killer cell activation via IL-15 upregulation, associated with granzyme B and perforin production, and the release of antitumor IFNγ cytokine. The F1 antibody also prevented the tumor recruitment of immunosuppressive tumor-associated macrophages M2 and myeloid-derived suppressor cells, a specific effect associated with a less immunosuppressive tumor microenvironment highlighted by TGFß decrease. Finally, the antibody F1 inhibited tumor growth of two TNBC PDXs, isolated from patients resistant or not to neo-adjuvant chemotherapy. CONCLUSION: Cath-D is a tumor-specific extracellular target in TNBC suitable for antibody-based therapy. Immunomodulatory antibody-based strategy against cath-D is a promising immunotherapy to treat patients with TNBC.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Catepsina D/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacocinética , Antineoplásicos Imunológicos/farmacocinética , Catepsina D/genética , Catepsina D/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Camundongos Nus , RNA Mensageiro/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
MAbs ; 11(3): 593-605, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30604643

RESUMO

Targeting transferrin receptor 1 (TfR1) with monoclonal antibodies is a promising therapeutic strategy in cancer as tumor cells often overexpress TfR1 and show increased iron needs. We have re-engineered six anti-human TfR1 single-chain variable fragment (scFv) antibodies into fully human scFv2-Fcγ1 and IgG1 antibodies. We selected the more promising candidate (H7), based on its ability to inhibit TfR1-mediated iron-loaded transferrin internalization in Raji cells (B-cell lymphoma). The H7 antibody displayed nanomolar affinity for its target in both formats (scFv2-Fcγ1 and IgG1), but cross-reacted with mouse TfR1 only in the scFv2-Fc format. H7 reduced the intracellular labile iron pool and, contrary to what has been observed with previously described anti-TfR1 antibodies, upregulated TfR1 level in Raji cells. H7 scFv2-Fc format elimination half-life was similar in FcRn knock-out and wild type mice, suggesting that TfR1 recycling contributes to prevent H7 elimination in vivo. In vitro, H7 inhibited the growth of erythroleukemia and B-cell lymphoma cell lines (IC50 0.1 µg/mL) and induced their apoptosis. Moreover, the Im9 B-cell lymphoma cell line, which is resistant to apoptosis induced by rituximab (anti-CD20 antibody), was sensitive to H7. In vivo, tumor regression was observed in nude mice bearing ERY-1 erythroleukemia cell xenografts treated with H7 through a mechanism that involved iron deprivation and antibody-dependent cytotoxic effector functions. Therefore, targeting TfR1 using the fully human anti-TfR1 H7 is a promising tool for the treatment of leukemia and lymphoma.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD/imunologia , Antineoplásicos Imunológicos , Leucemia Eritroblástica Aguda , Receptores da Transferrina/imunologia , Anticorpos de Cadeia Única , Animais , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Células CHO , Cricetulus , Células HEK293 , Humanos , Leucemia Eritroblástica Aguda/tratamento farmacológico , Leucemia Eritroblástica Aguda/imunologia , Leucemia Eritroblástica Aguda/patologia , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Camundongos , Camundongos Knockout , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...