Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(9): 1514-1529, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604972

RESUMO

Ammonium toxicity affecting plant metabolism and development is a worldwide problem impeding crop production. Remarkably, rice (Oryza sativa L.) favours ammonium as its major nitrogen source in paddy fields. We set up a forward-genetic screen to decipher the molecular mechanisms conferring rice ammonium tolerance and identified rohan showing root hypersensitivity to ammonium due to a missense mutation in an argininosuccinate lyase (ASL)-encoding gene. ASL localizes to plastids and its expression is induced by ammonium. ASL alleviates ammonium-inhibited root elongation by converting the excessive glutamine to arginine. Consequently, arginine leads to auxin accumulation in the root meristem, thereby stimulating root elongation under high ammonium. Furthermore, we identified natural variation in the ASL allele between japonica and indica subspecies explaining their different root sensitivity towards ammonium. Finally, we show that ASL expression positively correlates with root ammonium tolerance and that nitrogen use efficiency and yield can be improved through a gain-of-function approach.


Assuntos
Oryza , Oryza/genética , Alelos , Arginina , Nitrogênio , Plastídeos/genética
2.
Plant Physiol ; 187(3): 1104-1116, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33768243

RESUMO

Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics toward nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.


Assuntos
Nitrogênio/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas , Transdução de Sinais , Aclimatação , Nutrientes , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia
3.
Plant J ; 104(4): 1023-1037, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890411

RESUMO

High levels of ammonium nutrition reduce plant growth and different plant species have developed distinct strategies to maximize ammonium acquisition while alleviating ammonium toxicity through modulating root growth. To date, the mechanisms underlying plant tolerance or sensitivity towards ammonium remain unclear. Rice (Oryza sativa) uses ammonium as its main N source. Here we show that ammonium supply restricts rice root elongation and induces a helical growth pattern, which is attributed to root acidification resulting from ammonium uptake. Ammonium-induced low pH triggers the asymmetric distribution of auxin in rice root tips through changes in auxin signaling, thereby inducing a helical growth response. Blocking auxin signaling completely inhibited this root response. In contrast, this root response is not activated in ammonium-treated Arabidopsis. Acidification of Arabidopsis roots leads to the protonation of indole-3-acetic acid and dampening of the intracellular auxin signaling levels that are required for maintaining root growth. Our study suggests a different mode of action by ammonium on the root pattern and auxin response machinery in rice versus Arabidopsis, and the rice-specific helical root response towards ammonium is an expression of the ability of rice to moderate auxin signaling and root growth to utilize ammonium while confronting acidic stress.


Assuntos
Compostos de Amônio/metabolismo , Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...