Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765554

RESUMO

In this work, the implementation of advanced functional coatings based on the combination of two compatible nanofabrication techniques such as electrospinning and dip-coating technology have been successfully obtained for the design of antifungal surfaces. In a first step, uniform and beadless electrospun nanofibers of both polyethylene oxide (PEO) and polyethylene (PEO)/chitosan (CS) blend samples have been obtained. In a second step, the dip-coating process has been gradually performed in order to ensure an adequate distribution of silver nanoparticles (AgNPs) within the electrospun polymeric matrix (PEO/CS/AgNPs) by using a chemical reduction synthetic process, denoted as in situ synthesis (ISS). Scanning electron microscopy (SEM) has been used to evaluate the surface morphology of the samples, showing an evolution in average fiber diameter from 157 ± 43 nm (PEO), 124 ± 36 nm (PEO/CS) and 330 ± 106 nm (PEO/CS/AgNPs). Atomic force microscopy (AFM) has been used to evaluate the roughness profile of the samples, indicating that the ISS process induced a smooth roughness surface because a change in the average roughness Ra from 84.5 nm (PEO/CS) up to 38.9 nm (PEO/CS/AgNPs) was observed. The presence of AgNPs within the electrospun fiber mat has been corroborated by UV-Vis spectroscopy thanks to their characteristic optical properties (orange film coloration) associated to the Localized Surface Plasmon Resonance (LSPR) phenomenon by showing an intense absorption band in the visible region at 436 nm. Energy dispersive X-ray (EDX) profile also indicates the existence of a peak located at 3 keV associated to silver. In addition, after doping the electrospun nanofibers with AgNPs, an important change in the wettability with an intrinsic hydrophobic behavior was observed by showing an evolution in the water contact angle value from 23.4° ± 1.3 (PEO/CS) up to 97.7° ± 5.3 (PEO/CS/AgNPs). The evaluation of the antifungal activity of the nanofibrous mats against Pleurotus ostreatus clearly indicates that the presence of AgNPs in the outer surface of the nanofibers produced an important enhancement in the inhibition zone during mycelium growth as well as a better antifungal efficacy after a longer exposure time. Finally, these fabricated electrospun nanofibrous membranes can offer a wide range of potential uses in fields as diverse as biomedicine (antimicrobial against human or plant pathogen fungi) or even in the design of innovative packaging materials for food preservation.

2.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446159

RESUMO

Truffles are ascomycete hypogeous fungi belonging to the Tuberaceae family of the Pezizales order that grow in ectomycorrhizal symbiosis with tree roots, and they are known for their peculiar aromas and flavors. The axenic culture of truffle mycelium is problematic because it is not possible in many cases, and the growth rate is meager when it is possible. This limitation has prompted searching and characterizing new strains that can be handled in laboratory conditions for basic and applied studies. In this work, a new strain of Tuber borchii (strain SP1) was isolated and cultured, and its transcriptome was analyzed under different in vitro culture conditions. The results showed that the highest growth of T. borchii SP1 was obtained using maltose-enriched cultures made with soft-agar and in static submerged cultures made at 22 °C. We analyzed the transcriptome of this strain cultured in different media to establish a framework for future comparative studies, paying particular attention to the central metabolic pathways, principal secondary metabolite gene clusters, and the genes involved in producing volatile aromatic compounds (VOCs). The results showed a transcription signal for around 80% of the annotated genes. In contrast, most of the transcription effort was concentrated on a limited number of genes (20% of genes account for 80% of the transcription), and the transcription profile of the central metabolism genes was similar in the different conditions analyzed. The gene expression profile suggests that T. borchii uses fermentative rather than respiratory metabolism in these cultures, even in aerobic conditions. Finally, there was a reduced expression of genes belonging to secondary metabolite clusters, whereas there was a significative transcription of those involved in producing volatile aromatic compounds.


Assuntos
Ascomicetos , Micorrizas , Transcriptoma , Ascomicetos/metabolismo , Micorrizas/genética , Simbiose
3.
J Fungi (Basel) ; 7(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34682283

RESUMO

Strain degeneration has been defined as a decrease or loss in the yield of important commercial traits resulting from subsequent culture, which ultimately leads to Reactive Oxygen Species (ROS) production. Pleurotus ostreatus is a lignin-producing nematophagous edible mushroom. Mycelia for mushroom production are usually maintained in subsequent culture in solid media and frequently show symptoms of strain degeneration. The dikaryotic strain P. ostreatus (DkN001) has been used in our lab as a model organism for different purposes. Hence, different tools have been developed to uncover genetic and molecular aspects of this fungus. In this work, strain degeneration was studied in a full-sib monokaryotic progeny of the DkN001 strain with fast (F) and slow (S) growth rates by using different experimental approaches (light microscopy, malondialdehyde levels, whole-genome transcriptome analysis, and chitosan effect on monokaryotic mycelia). The results obtained showed that: (i) strain degeneration in P. ostreatus is linked to oxidative stress, (ii) the oxidative stress response in monokaryons is genotype dependent, (iii) stress and detoxifying genes are highly expressed in S monokaryons with symptoms of strain degeneration, (iv) chitosan addition to F and S monokaryons uncovered the constitutive expression of both oxidative stress and cellular detoxifying genes in S monokaryon strains which suggest their adaptation to oxidative stress, and (v) the overexpression of the cell wall genes, Uap1 and Cda1, in S monokaryons with strain degeneration phenotype indicates cell wall reshaping and the activation of High Osmolarity Glycerol (HOG) and Cell Wall Integrity (CWI) pathways. These results could constitute a hallmark for mushroom producers to distinguish strain degeneration in commercial mushrooms.

4.
J Fungi (Basel) ; 8(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35049947

RESUMO

This research aimed to establish the relationship between carbon-nitrogen nutritional factors and copper sulfate on laccase activity (LA) by Pleurotus ostreatus. Culture media composition was tested to choose the nitrogen source. Yeast extract (YE) was selected as a better nitrogen source than ammonium sulfate. Then, the effect of glucose and YE concentrations on biomass production and LA as response variables was evaluated using central composite experimental designs with and without copper. The results showed that the best culture medium composition was glucose 45 gL-1 and YE 15 gL-1, simultaneously optimizing these two response variables. The fungal transcriptome was obtained in this medium with or without copper, and the differentially expressed genes were found. The main upregulated transcripts included three laccase genes (lacc2, lacc6, and lacc10) regulated by copper, whereas the principal downregulated transcripts included a copper transporter (ctr1) and a regulator of nitrogen metabolism (nmr1). These results suggest that Ctr1, which facilitates the entry of copper into the cell, is regulated by nutrient-sufficiency conditions. Once inside, copper induces transcription of laccase genes. This finding could explain why a 10-20-fold increase in LA occurs with copper compared to cultures without copper when using the optimal concentration of YE as nitrogen sources.

5.
BMC Genomics ; 18(1): 883, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29145801

RESUMO

BACKGROUND: Coniophora olivacea is a basidiomycete fungus belonging to the order Boletales that produces brown-rot decay on dead wood of conifers. The Boletales order comprises a diverse group of species including saprotrophs and ectomycorrhizal fungi that show important differences in genome size. RESULTS: In this study we report the 39.07-megabase (Mb) draft genome assembly and annotation of C. olivacea. A total of 14,928 genes were annotated, including 470 putatively secreted proteins enriched in functions involved in lignocellulose degradation. Using similarity clustering and protein structure prediction we identified a new family of 10 putative lytic polysaccharide monooxygenase genes. This family is conserved in basidiomycota and lacks of previous functional annotation. Further analyses showed that C. olivacea has a low repetitive genome, with 2.91% of repeats and a restrained content of transposable elements (TEs). The annotation of TEs in four related Boletales yielded important differences in repeat content, ranging from 3.94 to 41.17% of the genome size. The distribution of insertion ages of LTR-retrotransposons showed that differential expansions of these repetitive elements have shaped the genome architecture of Boletales over the last 60 million years. CONCLUSIONS: Coniophora olivacea has a small, compact genome that shows macrosynteny with Coniophora puteana. The functional annotation revealed the enzymatic signature of a canonical brown-rot. The annotation and comparative genomics of transposable elements uncovered their particular contraction in the Coniophora genera, highlighting their role in the differential genome expansions found in Boletales species.


Assuntos
Basidiomycota/genética , Evolução Molecular , Genoma Fúngico , Basidiomycota/classificação , Proteínas Fúngicas/genética , Tamanho do Genoma , Genômica , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Proteômica , DNA Polimerase Dirigida por RNA/genética , Retroelementos , Sequências Repetidas Terminais
6.
PLoS Genet ; 12(6): e1006108, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27294409

RESUMO

Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation.


Assuntos
Ascomicetos/genética , Elementos de DNA Transponíveis/genética , Genoma Fúngico/genética , Pleurotus/genética , Retroelementos/genética , Transcrição Gênica/genética , Sequência de Bases , DNA Fúngico/genética , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Rev Esp Enferm Dig ; 107(1): 39-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25603331

RESUMO

Systemic lupus erithematosus (SLE) is an autoimmune disease with multiorgan involvement caused principally by vasculitis of small vessels. The gastrointestinal tract is one of the most frequently affected by SLE, with abdominal pain as the most common symptom. An early diagnosis and treatment of lupus enteritis is essential to avoid complications like hemorrhage or perforation, with up to 50 % of mortality rate. However, differential diagnosis sometimes is difficult, especially with other types of gastrointestinal diseases as digestive involvement of antiphospholipid syndrome (APS), moreover when both entities may coexist. We describe the case of a patient with both diseases that was diagnosed with lupus enteritis and treated with steroid therapy; the patient had an excellent response.


Assuntos
Abdome Agudo/etiologia , Neoplasias Intestinais/complicações , Linfangioma/complicações , Humanos , Neoplasias Intestinais/patologia , Jejuno/patologia , Jejuno/cirurgia , Laparotomia , Linfonodos/patologia , Linfangioma/patologia , Masculino , Mesentério , Pessoa de Meia-Idade
9.
BMC Genomics ; 15: 1071, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25480150

RESUMO

BACKGROUND: Helitrons are class-II eukaryotic transposons that transpose via a rolling circle mechanism. Due to their ability to capture and mobilize gene fragments, they play an important role in the evolution of their host genomes. We have used a bioinformatics approach for the identification of helitrons in two Pleurotus ostreatus genomes using de novo detection and homology-based searching. We have analyzed the presence of helitron-captured genes as well as the expansion of helitron-specific helicases in fungi and performed a phylogenetic analysis of their conserved domains with other representative eukaryotic species. RESULTS: Our results show the presence of two helitron families in P. ostreatus that disrupt gene colinearity and cause a lack of synteny between their genomes. Both putative autonomous and non-autonomous helitrons were transcriptionally active, and some of them carried highly expressed captured genes of unknown origin and function. In addition, both families contained eukaryotic, bacterial and viral domains within the helitron's boundaries. A phylogenetic reconstruction of RepHel helicases using the Helitron-like and PIF1-like helicase conserved domains revealed a polyphyletic origin for eukaryotic helitrons. CONCLUSION: P. ostreatus helitrons display features similar to other eukaryotic helitrons and do not tend to capture host genes or gene fragments. The occurrence of genes probably captured from other hosts inside the helitrons boundaries pose the hypothesis that an ancient horizontal transfer mechanism could have taken place. The viral domains found in some of these genes and the polyphyletic origin of RepHel helicases in the eukaryotic kingdom suggests that virus could have played a role in a putative lateral transfer of helitrons within the eukaryotic kingdom. The high similarity of some helitrons, along with the transcriptional activity of its RepHel helicases indicates that these elements are still active in the genome of P. ostreatus.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma Fúngico , Pleurotus/genética , Sequência de Bases , DNA Helicases/classificação , DNA Helicases/genética , DNA Helicases/metabolismo , Etiquetas de Sequências Expressas , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Estrutura Terciária de Proteína , Retroelementos/genética , Alinhamento de Sequência , Transcriptoma
10.
PLoS One ; 8(9): e73282, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039902

RESUMO

BACKGROUND: The basidiomycete Pleurotus ostreatus is an efficient producer of laccases, a group of enzymes appreciated for their use in multiple industrial processes. The aim of this study was to reveal the molecular basis of the superiority of laccase production by dikaryotic strains compared to their parental monokaryons. METHODOLOGY/PRINCIPAL FINDINGS: We bred and studied a set of dikaryotic strains starting from a meiotic population of monokaryons. We then completely characterised the laccase allelic composition, the laccase gene expression and activity profiles in the dikaryotic strain N001, in two of its meiotic full-sib monokaryons and in the dikaryon formed from their mating. CONCLUSIONS/SIGNIFICANCE: Our results suggested that the dikaryotic superiority observed in laccase activity was due to non-additive transcriptional increases in lacc6 and lacc10 genes. Furthermore, the expression of these genes was divergent in glucose- vs. lignocellulose-supplemented media and was highly correlated to the detected extracellular laccase activity. Moreover, the expression profile of lacc2 in the dikaryotic strains was affected by its allelic composition, indicating a putative single locus heterozygous advantage.


Assuntos
Lacase/genética , Pleurotus/enzimologia , Expressão Gênica , Perfilação da Expressão Gênica , Genes Fúngicos , Lacase/metabolismo , Pleurotus/genética
11.
Appl Environ Microbiol ; 78(11): 4037-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22467498

RESUMO

The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Lacase/metabolismo , Pleurotus/enzimologia , Pleurotus/crescimento & desenvolvimento , Biotecnologia/métodos , Meios de Cultura , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Lacase/genética , Micologia/métodos , Pleurotus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Proc Natl Acad Sci U S A ; 109(14): 5458-63, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22434909

RESUMO

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Assuntos
Basidiomycota/genética , Genômica , Lignina/metabolismo , Basidiomycota/classificação , Hidrólise , Dados de Sequência Molecular , Oxirredução , Filogenia , Especificidade da Espécie
13.
Int Microbiol ; 14(2): 111-20, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22069155

RESUMO

Pleurotus ostreatus is an industrially cultivated basidiomycete with nutritional and environmental applications. Its genome, which was sequenced by the Joint Genome Institute, has become a model for lignin degradation and for fungal genomics and transcriptomics studies. The complete P. ostreatus genome contains 35 Mbp organized in 11 chromosomes, and two different haploid genomes have been individually sequenced. In this work, genomics and transcriptomics approaches were employed in the study of P. ostreatus under different physiological conditions. Specifically, we analyzed a collection of expressed sequence tags (EST) obtained from cut fruit bodies that had been stored at 4°C for 7 days (postharvest conditions). Studies of the 253 expressed clones that had been automatically and manually annotated provided a detailed picture of the life characteristics of the self-sustained fruit bodies. The results suggested a complex metabolism in which autophagy, RNA metabolism, and protein and carbohydrate turnover are increased. Genes involved in environment sensing and morphogenesis were expressed under these conditions. The data improve our understanding of the decay process in postharvest mushrooms and highlight the use of high-throughput techniques to construct models of living organisms subjected to different environmental conditions.


Assuntos
Pleurotus/genética , Transcriptoma , Etiquetas de Sequências Expressas , Armazenamento de Alimentos , Genes Fúngicos , Genômica/métodos , Refrigeração , Fatores de Tempo
14.
Int. microbiol ; 14(2): 111-120, jun. 2011. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-93478

RESUMO

Pleurotus ostreatus is an industrially cultivated basidiomycete with nutritional and environmental applications. Its genome, which was sequenced by the Joint Genome Institute, has become a model for lignin degradation and for fungal genomics and transcriptomics studies. The complete P. ostreatus genome contains 35 Mbp organized in 11 chromosomes, and two different haploid genomes have been individually sequenced. In this work, genomics and transcriptomics approaches were employed in the study of P. ostreatus under different physiological conditions. Specifically, we analyzed a collection of expressed sequence tags (EST) obtained from cut fruit bodies that had been stored at 4°C for 7 days (postharvest conditions). Studies of the 253 expressed clones that had been automatically and manually annotated provided a detailed picture of the life characteristics of the self-sustained fruit bodies. The results suggested a complex metabolism in which autophagy, RNA metabolism, and protein and carbohydrate turnover are increased. Genes involved in environment sensing and morphogenesis were expressed under these conditions. The data improve our understanding of the decay process in postharvest mushrooms and highlight the use of high-throughput techniques to construct models of living organisms subjected to different environmental conditions (AU)


No disponible


Assuntos
Pleurotus/genética , Basidiomycota/genética , Agaricales/genética , Etiquetas de Sequências Expressas , Fatores de Tempo
15.
Appl Environ Microbiol ; 75(5): 1427-36, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19114509

RESUMO

Telomeres are structural and functional chromosome regions that are essential for the cell cycle to proceed normally. They are, however, difficult to map genetically and to identify in genome-wide sequence programs because of their structure and repetitive nature. We studied the telomeric and subtelomeric organization in the basidiomycete Pleurotus ostreatus using a combination of molecular and bioinformatics tools that permitted us to determine 19 out of the 22 telomeres expected in this fungus. The telomeric repeating unit in P. ostreatus is TTAGGG, and the numbers of repetitions of this unit range between 25 and 150. The mapping of the telomere restriction fragments to linkage groups 6 and 7 revealed polymorphisms compatible with those observed by pulsed field gel electrophoresis separation of the corresponding chromosomes. The subtelomeric regions in Pleurotus contain genes similar to those described in other eukaryotic systems. The presence of a cluster of laccase genes in chromosome 6 and a bipartite structure containing a Het-related protein and an alcohol dehydrogenase are especially relevant; this bipartite structure is characteristic of the Pezizomycotina fungi Neurospora crassa and Aspergillus terreus. As far as we know, this is the first report describing the presence of such structures in basidiomycetes and the location of a laccase gene cluster in the subtelomeric region, where, among others, species-specific genes allowing the organism to adapt rapidly to the environment usually map.


Assuntos
Pleurotus/genética , Telômero/genética , Álcool Desidrogenase/genética , Mapeamento Cromossômico , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/genética , Lacase/genética , Dados de Sequência Molecular , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA
16.
Brief Funct Genomic Proteomic ; 7(4): 249-63, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18579617

RESUMO

The high-throughput analytical techniques used in genome, proteome and metabolome studies produce large sets of data that must be studied using appropriate tools. The construction of networks linking different genetic elements and/or functions makes it possible to obtain an integrated view of the cell molecular biology and will eventually help us to predict complex phenotypes from molecular data. Genetic networks can be constructed using different types of data such as genes involved in the control of complex phenotypic traits, genes controlling global gene expression, genetic elements involved in the same metabolic process, gene products interacting physically between them. The connections linking these genetic elements in the network reflect the genetic, physical and/or functional interaction among them. All these networks share common properties and reflect the different layers of the cell's complexity. In this review, we will study how different types of networks can be constructed, how the different networks complement each other and how this information can be used to obtain an integrated picture of the cell.


Assuntos
Redes Reguladoras de Genes/genética , Genoma , Animais , Biotecnologia , DNA/genética , Drosophila/genética , Regulação da Expressão Gênica , Ligação Genética , Genoma de Planta , Metabolismo , Camundongos/genética , Modelos Genéticos , Biologia Molecular , Proteoma , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...