Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 72: 103615, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34649078

RESUMO

BACKGROUND: Most children and youth develop mild or asymptomatic disease during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, a very small number of patients suffer severe Coronavirus induced disease 2019 (COVID-19). The reasons underlying these different outcomes remain unknown. METHODS: We analyzed three different cohorts: children with acute infection (n=550), convalescent children (n=138), and MIS-C (multisystem inflammatory syndrome in children, n=42). IgG and IgM antibodies to the spike protein of SARS-CoV-2, serum-neutralizing activity, plasma cytokine levels, and the frequency of circulating Follicular T helper cells (cTfh) and plasmablasts were analyzed by conventional methods. FINDINGS: Fifty-eight percent of the children in the acute phase of infection had no detectable antibodies at the time of sampling while a seronegative status was found in 25% and 12% of convalescent and MIS-C children, respectively. When children in the acute phase of the infection were stratified according disease severity, we found that contrasting with the response of children with asymptomatic, mild and moderate disease, children with severe COVID-19 did not develop any detectable response. A defective antibody response was also observed in the convalescent cohort for children with severe disease at the time of admission. This poor antibody response was associated to both, a low frequency of cTfh and a high plasma concentration of inflammatory cytokines. INTERPRETATION: A weak and delayed kinetic of antibody response to SARS-CoV-2 together with a systemic pro-inflammatory profile characterize pediatric severe COVID-19. Because comorbidities are highly prevalent in children with severe COVID-19, further studies are needed to clarify their contribution in the weak antibody response observed in severe disease. FUNDING: National Agency for Scientific and Technological Promotion from Argentina (IP-COVID-19-0277 and PMO-BID-PICT2018-2548).


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos , COVID-19/complicações , COVID-19/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Argentina , COVID-19/sangue , Criança , Pré-Escolar , Citocinas/sangue , Feminino , Humanos , Lactente , Masculino , SARS-CoV-2/imunologia , Síndrome de Resposta Inflamatória Sistêmica/sangue
2.
Front Pharmacol ; 12: 672392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234671

RESUMO

Traumatic Brain Injury (TBI) remains a leading cause of morbidity and mortality in adults under 40 years old. Once primary injury occurs after TBI, neuroinflammation and oxidative stress (OS) are triggered, contributing to the development of many TBI-induced neurological deficits, and reducing the probability of critical trauma patients´ survival. Regardless the research investment on the development of anti-inflammatory and neuroprotective treatments, most pre-clinical studies have failed to report significant effects, probably because of the limited blood brain barrier permeability of no-steroidal or steroidal anti-inflammatory drugs. Lately, neurotrophic factors, such as the insulin-like growth factor 1 (IGF-1), are considered attractive therapeutic alternatives for diverse neurological pathologies, as they are neuromodulators linked to neuroprotection and anti-inflammatory effects. Considering this background, the aim of the present investigation is to test early IGF-1 gene therapy in both OS markers and cognitive deficits induced by TBI. Male Wistar rats were injected via Cisterna Magna with recombinant adenoviral vectors containing the IGF-1 gene cDNA 15 min post-TBI. Animals were sacrificed after 60 min, 24 h or 7 days to study the advanced oxidation protein products (AOPP) and malondialdehyde (MDA) levels, to recognize the protein oxidation damage and lipid peroxidation respectively, in the TBI neighboring brain areas. Cognitive deficits were assessed by evaluating working memory 7 days after TBI. The results reported significant increases of AOPP and MDA levels at 60 min, 24 h, and 7 days after TBI in the prefrontal cortex, motor cortex and hippocampus. In addition, at day 7, TBI also reduced working memory performance. Interestingly, AOPP, and MDA levels in the studied brain areas were significantly reduced after IGF-1 gene therapy that in turn prevented cognitive deficits, restoring TBI-animals working memory performance to similar values regarding control. In conclusion, early IGF-1 gene therapy could be considered a novel therapeutic approach to targeting neuroinflammation as well as to preventing some behavioral deficits related to TBI.

3.
EBioMedicine ; 67: 103357, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33979758

RESUMO

BACKGROUND: Perhaps reflecting that children with COVID-19 rarely exhibit severe respiratory symptoms and often remain asymptomatic, little attention has been paid to explore the immune response in pediatric COVID-19. Here, we analyzed the phenotype and function of circulating neutrophils from children with COVID-19. METHODS: An observational study including 182 children with COVID-19, 21 children with multisystem inflammatory syndrome (MIS-C), and 40 healthy children was performed in Buenos Aires, Argentina. Neutrophil phenotype was analyzed by flow cytometry in blood samples. Cytokine production, plasma levels of IgG antibodies directed to the spike protein of SARS-CoV-2 and citrullinated histone H3 were measured by ELISA. Cell-free DNA was quantified by fluorometry. FINDINGS: Compared with healthy controls, neutrophils from children with COVID-19 showed a lower expression of CD11b, CD66b, and L-selectin but a higher expression of the activation markers HLA-DR, CD64 and PECAM-1 and the inhibitory receptors LAIR-1 and PD-L1. No differences in the production of cytokines and NETs were observed. Interestingly, the expression of CD64 in neutrophils and the serum concentration of IgG antibodies directed to the spike protein of SARS-CoV-2 distinguished asymptomatic from mild and moderate COVID-19. INTERPRETATION: Acute lung injury is a prominent feature of severe COVID-19 in adults. A low expression of adhesion molecules together with a high expression of inhibitory receptors in neutrophils from children with COVID-19 might prevent tissue infiltration by neutrophils preserving lung function. FUNDING: This study was supported by the Ministry of Science and Technology (National Agency for Scientific and Technological Promotion, IP-COVID-19-0277 and PMO BID PICT 2018-2548), and University of Buenos Aires from Argentina (20020170100573BA).


Assuntos
Biomarcadores/sangue , COVID-19/imunologia , Neutrófilos/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Anticorpos Antivirais/sangue , Argentina , COVID-19/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Citocinas/sangue , Feminino , Citometria de Fluxo , Humanos , Imunoglobulina G/sangue , Lactente , Masculino , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Síndrome de Resposta Inflamatória Sistêmica/sangue
4.
Mol Pharm ; 18(2): 743-750, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044825

RESUMO

Loperamide is a µ-opioid agonist with poor gastrointestinal absorption, mainly because of its modest aqueous solubility and being a P-glycoprotein (Pgp) efflux substrate. Nevertheless, studies associated with therapeutic effects strongly suggest that loperamide holds potential pharmacological advantages over traditional µ-opioid agonists commonly used for analgesia. Thus, in this Communication, we assessed in MDCK-hMDR1 cell lines the effects over loperamide uptake and efflux ratio, when loaded into Eudragit RS (ERS) nanocarriers coated with poloxamer 188 (P188). ERS was chosen for enhancing loperamide aqueous dispersibility and P188 as a potential negative Pgp modulator. In uptake assays, it was observed that Pgp limited the accumulation of loperamide into cells and that preincubation with P188, but not coincubation, led to increasing loperamide uptake at a similar extent of Pgp pharmacological inhibition. On the other hand, the efflux ratio displayed no alterations when Pgp was pharmacologically inhibited, whereas ERS/P188 nanocarriers effectively enhanced loperamide uptake and absorptive transepithelial transport. The latter suggests that loperamide transport across cells is significantly influenced by the presence of the unstirred water layer (UWL), which could hinder the visualization of Pgp-efflux effects during transport assays. Thus, results in this work highlight that formulating loperamide into this nanocarrier enhances its uptake and transport permeability.


Assuntos
Antidiarreicos/administração & dosagem , Portadores de Fármacos/química , Loperamida/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Resinas Acrílicas/química , Administração Oral , Animais , Antidiarreicos/farmacocinética , Disponibilidade Biológica , Cães , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Loperamida/farmacocinética , Células Madin Darby de Rim Canino , Metacrilatos/química , Nanopartículas/química , Permeabilidade , Poloxâmero/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade
5.
Biochim Biophys Acta Mol Cell Res ; 1867(9): 118735, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32389643

RESUMO

Emerging evidence shows that Rab11 recycling endosomes (REs Rab11) are essential for several neuronal processes, including the proper functioning of growth cones, synapse architecture regulation and neuronal migration. However, several aspects of REs Rab11 remain unclear, such as its sub-cellular distribution across neuronal development, contribution to dendritic tree organization and its consequences in memory formation. In this work we show a spatio-temporal correlation between the endogenous localization of REs Rab11 and developmental stage of neurons. Furthermore, Rab11-suppressed neurons showed an increase on dendritic branching (without altering total dendritic length) and misdistribution of dendritic proteins in cultured neurons. In addition, suppression of Rab11 in adult rat brains in vivo (by expressing shRab11 through lentiviral infection), showed a decrease on both the sensitivity to induce long-term potentiation and hippocampal-dependent memory acquisition. Taken together, our results suggest that REs Rab11 expression is required for a proper dendritic architecture and branching, controlling key aspects of synaptic plasticity and spatial memory formation.


Assuntos
Dendritos/metabolismo , Plasticidade Neuronal , Neurônios/fisiologia , Memória Espacial , Proteínas rab de Ligação ao GTP/genética , Animais , Giro Denteado/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Hipocampo/fisiologia , Potenciação de Longa Duração , Masculino , Gravidez , Ratos , Proteínas rab de Ligação ao GTP/metabolismo
6.
ASN Neuro ; 12: 1759091420925977, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32466659

RESUMO

Cognitive dysfunction is one of the most severe nonmotor symptoms of nigrostriatal impairment. This occurs as a result of profound functional and morphological changes of different neuronal circuits, including modifications in the plasticity and architecture of hippocampal synapses. Such alterations can be implicated in the genesis and progression of dementia associated with neurodegenerative diseases including Parkinson-like symptoms. There are few studies regarding cognitive changes in nigrostriatal animal models. The aim of this study was to characterize the onset of memory deficit after induction of neurotoxicity with 6-hydroxydopamine (6-OHDA) and its correlation with hippocampal dysfunction. For this, we bilaterally microinjected 6-OHDA in dorsolateral Caudate-Putamen unit (CPu) and then, animals were tested weekly for working memory, spatial short-term memory, and motor performance. We evaluated tyrosine hydroxylase (TH) as a dopamine marker, aldehyde dehydrogenase 2 (ALDH2), a mitochondria detoxification enzyme and astrocyte glial fibrillar acid protein (GFAP) an immunoreactivity marker involved in different areas: CPu, substantia nigra, prefrontal cortex, and hippocampus. We observed a specific prefrontal cortex and nigrostriatal pathway TH reduction while ALDH2 showed a decrease-positive area in all the studied regions. Moreover, GFAP showed a specific CPu decrease and hippocampus increase of positively stained area on the third week after toxicity. We also evaluated the threshold to induce long-term potentiation in hippocampal excitability. Our findings showed that reduced hippocampal synaptic transmission was accompanied by deficits in memory processes, without affecting motor performance on the third-week post 6-OHDA administration. Our results suggest that 3 weeks after neurotoxic administration, astrocytes and ALDH2 mitochondrial enzyme modifications participate in altering the properties that negatively affect hippocampal function and consequently cognitive behavior.


Assuntos
Astrócitos/patologia , Disfunção Cognitiva/patologia , Corpo Estriado/patologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/patologia , Substância Negra/patologia , Animais , Astrócitos/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/psicologia , Corpo Estriado/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/psicologia , Ratos , Ratos Wistar , Substância Negra/efeitos dos fármacos
7.
ACS Omega ; 3(1): 1220-1230, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023798

RESUMO

Photoinduced antibacterial gold nanoparticles were developed as an alternative for the treatment of antibiotic-resistant bacteria. Thanks to the amoxicillin coating, they possess high in vivo stability, selectivity for the bacteria wall, a good renal clearance, and are completely nontoxic for eukaryotic cells at the bactericidal concentrations. A simple one-step synthesis of amoxi@AuNP is described at mild temperatures using the antibiotic as both reducing and stabilizing agent. Time-resolved fluorescence microscopy proved these novel nano-photosensitizers, with improved selectivity, are bactericidal but showing excellent biocompatibility toward eukaryotic cells at the same dose (1.5 µg/mL) when co-cultures are analyzed. Their stability in biological media, hemocompatibility, and photo-antibacterial effect against sensitive and antibiotic-resistant Staphylococcus aureus were evaluated in vitro, whereas toxicity, renal clearance, and biodistribution were studied in vivo in male Wistar rats. The use of these nanoparticles to treat antibiotic-resistant infections is promising given their high stability and cytocompatibility.

8.
Psychopharmacology (Berl) ; 233(6): 1077-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26700241

RESUMO

RATIONALE: In response to stress, corticotropin releasing hormone (CRH) and vasopressin (AVP) are released from the hypothalamus, activate their receptors (CRHR1, CRHR2 or AVPr1b), and synergistically act to induce adrenocorticotropic hormone (ACTH) release from the anterior pituitary. Overstimulation of this system has been frequently associated with major depression states. OBJECTIVE: The objective of the study is to assess the role of AVP and CRH receptors in fluoxetine and venlafaxine effects on the expression of depression-related behavior. METHODS: In an animal model of depression (olfactory bulbectomy in mice, OB), we evaluated the effects of fluoxetine or venlafaxine (both 10 mg/kg/day) chronic administration on depression-related behavior in the tail suspension test. Plasma levels of AVP, CRH, and ACTH were determined as well as participation of their receptors in the expression of depression related-behavior and gene expression of AVP and CRH receptors (AVPr1b, CRHR1, and CRHR2) in the pituitary gland. RESULTS: The expression of depressive-like behavior in OB animals was reversed by treatment with both antidepressants. Surprisingly, OB-saline mice exhibited increased AVP and ACTH plasma levels, with no alterations in CRH levels when compared to sham mice. Chronic fluoxetine or venlafaxine reversed these effects. In addition, a significant increase only in AVPr1b gene expression was found in OB-saline. CONCLUSION: The antidepressant therapy used seems to be more likely related to a reduced activation of AVP rather than CRH receptors, since a positive correlation between AVP levels and depressive-like behavior was observed in OB animals. Furthermore, a full restoration of depressive behavior was observed in OB-fluoxetine- or venlafaxine-treated mice only when AVP was centrally administered but not CRH.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Fluoxetina/uso terapêutico , Receptores de Vasopressinas/metabolismo , Cloridrato de Venlafaxina/uso terapêutico , Hormônio Adrenocorticotrópico/sangue , Animais , Antidepressivos/farmacologia , Arginina Vasopressina/sangue , Comportamento Animal/efeitos dos fármacos , Hormônio Liberador da Corticotropina/sangue , Transtorno Depressivo/etiologia , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Fluoxetina/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Bulbo Olfatório/cirurgia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cloridrato de Venlafaxina/farmacologia
9.
Psychopharmacology (Berl) ; 229(1): 41-50, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23579428

RESUMO

RATIONALE: Repeated cocaine administration induces behavioral sensitization in about 50 % of treated animals. Nitric oxide could be involved in the acquisition and maintenance of behavioral cocaine effects, probably by activation of neuronal nitric oxide synthase (nNOS)/NO/soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) signaling pathway, since inhibition of the nNOS enzyme attenuates development of sensitization in rats. On the other hand, increased cGMP availability by phosphodiesterase 5 inhibitors has been correlated to the misuse and recreational use of these agents and also to the concomitant use with illicit drugs in humans. Hippocampus is an important brain region for conditioning to general context previously associated to drug availability, influencing drug-seeking behavior and sensitization. Moreover, cocaine and other drugs of abuse can affect the strength of glutamate synapses in this structure, lastly modifying neuronal activity in main regions of the reward circuitry. OBJECTIVE: The objective of this study is to determine whether the pharmacological manipulation of nNOS/NO/sGC/cGMP signaling pathway altered changes induced by repeated cocaine exposure. RESULTS: The present investigation showed a relationship between behavioral cocaine sensitization, reduced threshold to generate long-term potentiation (LTP) in hippocampal dentate gyrus, and increased nNOS activity in this structure. However, when nNOS or sGC were inhibited, the number of sensitized animals was reduced, and the threshold to generate LTP was increased. The opposite occurred when cGMP availability was increased. CONCLUSION: We demonstrate a key role of the nNOS activity and NO/sGC/cGMP signaling pathway in the development of cocaine sensitization and in the associated enhancement of hippocampal synaptic transmission.


Assuntos
Cocaína/administração & dosagem , GMP Cíclico/metabolismo , Guanilato Ciclase/fisiologia , Hipocampo/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Inibidores da Fosfodiesterase 5/farmacologia , Animais , Comportamento Aditivo/metabolismo , Comportamento Aditivo/fisiopatologia , Guanilato Ciclase/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
Eur J Neurosci ; 36(8): 3118-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22759216

RESUMO

Hippocampal synaptic plasticity has been related to learning and adaptive processes developed during chronic drug administration, suggesting the existence of a common neurobiological mechanism mediating drug addiction and memory. Moreover, protein kinase M zeta (PKMζ) is critical for the maintenance of hippocampal long-term potentiation (LTP) and spatial conditioned long-term memories. Also, a link between activity-regulated cytoskeleton-associated protein (Arc), PKMζ and LTP has been proposed. Our previous results demonstrated that re-exposure to the withdrawal environment was able to evoke the memory acquired when the anxiety measured as a diazepam (DZ) withdrawal sign was experienced. In the present work we evaluated if the memory associated with DZ withdrawal could be affected by changes in the contextual cues presented during withdrawal and by intrahippocampal administration of a PKMζ inhibitor. We found that the context was relevant for the expression of withdrawal signs as changes in contextual cues prevented the expression of the anxiety-like behavior observed during plus-maze (PM) re-exposure, the associated enhanced synaptic plasticity and the increase in Arc expression. Furthermore, intrahippocampal administration of PKMζ inhibitor previous to re-exposure to the PM test also impaired expression of anxiety-like behavior and the facilitated LTP. These results support the relevance of the hippocampal synaptic plasticity in the maintenance of the memory trace during benzodiazepines withdrawal, adding new evidences for common mechanisms between memory and drug addiction that can be intervened for treatment or prevention of this pathology.


Assuntos
Sinais (Psicologia) , Proteínas do Citoesqueleto/metabolismo , Diazepam/farmacologia , Hipocampo/metabolismo , Potenciação de Longa Duração , Memória de Longo Prazo , Proteínas do Tecido Nervoso/metabolismo , Proteína Quinase C/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Proteínas do Citoesqueleto/genética , Diazepam/efeitos adversos , Potenciais Pós-Sinápticos Excitadores , Expressão Gênica , Hipocampo/fisiologia , Masculino , Proteínas do Tecido Nervoso/genética , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Wistar
11.
Psychopharmacology (Berl) ; 218(2): 323-30, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21125397

RESUMO

RATIONALE: The medial prefrontal cortex (mPFC), a forebrain region that regulates cognitive function and reward-motivated behaviors, has been implicated in the neuropathological mechanisms of drug addiction and withdrawal. In cocaine-abstinent human addicts, neuronal activity of the mPFC is increased in response to cocaine re-exposure or drug-associated cues. Additionally, repeated cocaine exposure alters the membrane properties and ion channel function of mPFC pyramidal neurons in drug-withdrawn rats, leading to an increased firing in response to excitatory stimuli. Nitric oxide (NO), a diffusible neuromodulator of neuronal excitability, may play a role in initiating and maintaining behavioral effects of psychostimulants. However, the role of NO in the mechanisms by which cocaine affects membrane excitability is not well clarified. OBJECTIVES: In this study, we attempted to determine whether inhibition of neuronal nitric oxide synthase (nNOS) altered the changes induced by repeated cocaine exposure and withdrawal. METHODS: Visualized whole-cell current clamp recordings in brain slices containing the mPFC of rats administered (once per day for 5 days) with either vehicle (10% Cremophor EL in saline 0.9%), cocaine (15 mg/kg, i.p.), or cocaine and the nNOS inhibitor 7-NI (50 mg/kg, i.p.) were employed. RESULTS: We found that nNOS inhibition prevented cocaine sensitization and the increased membrane excitability of pyramidal cells, evidenced by an increased number of evoked spikes and reductions in inward rectification observed after short-term withdrawal from cocaine. CONCLUSIONS: These findings suggest that NO plays an important role in chronic cocaine-induced deregulation of the mPFC activity that may contribute to the development of behavioral sensitization and cocaine withdrawal.


Assuntos
Cocaína/administração & dosagem , Óxido Nítrico Sintase Tipo I/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/enzimologia , Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Masculino , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Técnicas de Patch-Clamp , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Ratos , Ratos Sprague-Dawley , Recompensa , Síndrome de Abstinência a Substâncias/fisiopatologia
12.
Synapse ; 65(2): 168-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20665696

RESUMO

The nucleus accumbens (NAc) is a limbic structure in the forebrain that plays a critical role in cognitive function and addiction. Dopamine modulates activity of medium spiny neurons (MSNs) in the NAc. Both dopamine D1-like and D2-like receptors (including D1R or D(1,5)R and D2R or D(2,3,4)R, respectively) are thought to play critical roles in cocaine addiction. Our previous studies demonstrated that repeated cocaine exposure (which alters dopamine transmission) decreases excitability of NAc MSNs in cocaine-sensitized, withdrawn rats. This decrease is characterized by a reduction in voltage-sensitive Na(+) currents and high voltage-activated Ca(2+) currents, along with increased voltage-gated K(+) currents. These changes are associated with enhanced activity in the D1R/cAMP/PKA/protein phosphatase 1 pathway and diminished calcineurin function. Although D1R-mediated signaling is enhanced by repeated cocaine exposure, little is known whether and how the D2R is implicated in the cocaine-induced NAc dysfunction. Here, we performed a combined electrophysiological, biochemical, and neuroimaging study that reveals the cocaine-induced dysregulation of Ca(2+) homeostasis with involvement of D2R. Our novel findings reveal that D2R stimulation reduced Ca(2+) influx preferentially via the L-type Ca(2+) channels and evoked intracellular Ca(2+) release, likely via inhibiting the cAMP/PKA cascade, in the NAc MSNs of drug-free rats. However, repeated cocaine exposure abolished the D2R effects on modulating Ca(2+) homeostasis with enhanced PKA activity and led to a decrease in whole-cell Ca(2+) influx. These adaptations, which persisted for 21 days during cocaine abstinence, may contribute to the mechanism of cocaine withdrawal.


Assuntos
Cálcio/metabolismo , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Homeostase/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Análise de Variância , Animais , Calcineurina/farmacologia , Canais de Cálcio/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Interações Medicamentosas , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Salicilamidas/farmacologia , Fatores de Tempo
13.
Cell Mol Neurobiol ; 30(7): 1067-75, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20582463

RESUMO

Leucine accumulates in fluids and tissues of patients affected by maple syrup urine disease, an inherited metabolic disorder, predominantly characterized by neurological dysfunction. Although, a variable degree of cognition/psychomotor delay/mental retardation is found in a considerable number of individuals affected by this deficiency, the mechanisms underlying the neuropathology of these alterations are still not defined. Therefore, the aim of this study was to investigate the effect of acute intra-hippocampal leucine administration in the step-down test in rats. In addition, the leucine effects on the electrophysiological parameter, long-term potentiation generation, and on the activities of the respiratory chain were also investigated. Male Wistar rats were bilaterally administrated with leucine (80 nmol/hippocampus; 160 nmol/rat) or artificial cerebrospinal fluid (controls) into the hippocampus immediately post-training in the behavioral task. Twenty-four hours after training in the step-down test, the latency time was evaluated and afterwards animals were sacrificed for assessing the ex vivo biochemical measurements. Leucine-treated animals showed impairment in memory consolidation and a complete inhibition of long-term potentiation generation at supramaximal stimulation. In addition, a significant increment in complex IV activity was observed in hippocampus from leucine-administered rats. These data strongly indicate that leucine compromise memory consolidation, and that impairment of long-term potentiation generation and unbalance of the respiratory chain may be plausible mechanisms underlying the deleterious leucine effect on cognition.


Assuntos
Hipocampo , Leucina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Eletrofisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/fisiologia , Testes Neuropsicológicos , Ratos , Ratos Wistar
14.
Physiol Behav ; 101(1): 117-23, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20451534

RESUMO

Although the hypothalamus has been long considered the main ghrelin (Ghr) target organ mediating orexigenic effects, recently it has been shown that in-vivo Ghr hippocampus administration improves learning and memory in the inhibitory avoidance paradigm. However, the possible mechanisms underlying this memory facilitation effect have not been clarified. Given that the biochemical memory cascade into the hippocampus involves nitric oxide (NO) synthesis via NO synthase (NOS) activation, we investigated 1) if Ghr administration modulated NOS activity in the hippocampus; and 2) if hippocampal NOS inhibition influenced Ghr-induced memory facilitation, using a behavioral paradigm, biochemical determinations and an electrophysiological model. Our results showed that intra-hippocampal Ghr administration increased the NOS activity in a dose dependent manner, and reduced the threshold for LTP generation in dentate gyrus of rat hippocampus. Moreover, pre-administration of NG-nitro-l-arginine (l-NOArg) in the hippocampus partially prevented the Ghr-induced memory improvement, abolished the increase in NOS activity, and prevented the decreased threshold to generate LTP induced by Ghr. These findings suggest that activation of the NOS/NO pathway in hippocampus participates in the effects of Ghr on memory consolidation and is related with plastic properties of the hippocampal three-synaptic loop.


Assuntos
Giro Denteado/enzimologia , Grelina/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Óxido Nítrico Sintase/metabolismo , Análise de Variância , Animais , Aprendizagem da Esquiva/fisiologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Relação Dose-Resposta a Droga , Ativação Enzimática , Grelina/administração & dosagem , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Óxido Nítrico Sintase/efeitos dos fármacos , Ratos , Ratos Wistar , Análise de Regressão , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
15.
J Neurophysiol ; 96(5): 2217-28, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16885524

RESUMO

The nucleus accumbens (NAc) is a forebrain area in the mesocorticolimbic dopamine (DA) system that regulates many aspects of drug addiction. Neuronal activity in the NAc is modulated by different subtypes of DA receptors. Although DA signaling has received considerable attention, the mechanisms underlying D(2)-class receptor (D(2)R) modulation of firing in medium spiny neurons (MSNs) localized within the NAc remain ambiguous. In the present study, we performed whole cell current-clamp recordings in rat brain slices to determine whether and how D(2)R modulation of K(+) channel activity regulates the intrinsic excitability of NAc neurons in the core region. D(2)R stimulation by quinpirole or DA significantly and dose-dependently decreased evoked Na(+) spikes. This D(2)R effect on inhibiting evoked firing was abolished by antagonism of D(2)Rs, reversed by blockade of voltage-sensitive, slowly inactivating A-type K(+) currents (I(As)), or eliminated by holding membrane potentials at levels in which I(As) was inactivated. It was also mimicked by inhibition of cAMP-dependent protein kinase (PKA) activity, but not phosphatidylinositol-specific phospholipase C (PI-PLC) activity. Moreover, D(2)R stimulation also reduced the inward rectification and depolarized the resting membrane potentials (RMPs) by decreasing "leak" K(+) currents. However, the D(2)R effects on inward rectification and RMP were blocked by inhibition of PI-PLC, but not PKA activity. These findings indicate that, with facilitated intracellular Ca(2+) release and activation of the D(2)R/G(q)/PLC/PIP(2) pathway, the D(2)R-modulated changes in the NAc excitability are dynamically regulated and integrated by multiple K(+) currents, including but are not limited to I(As), inwardly rectifying K(+) currents (I(Kir)), and "leak" currents (I(K-2P)).


Assuntos
Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Canais de Potássio/fisiologia , Receptores de Dopamina D2/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Núcleo Accumbens/citologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/fisiologia , Fosfolipases Tipo C/fisiologia
16.
Brain Res Mol Brain Res ; 131(1-2): 58-64, 2004 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-15530652

RESUMO

The cellular prion protein plays a role in the etiology of transmissible and inherited spongiform encephalopathies. However, the physiological role of the cellular prion protein is still under debate. Results regarding the synaptic transmission using the same strain of animals where the cellular prion protein gene was ablated are controversial, and need further investigation. In this work, we have studied the hippocampal synaptic transmission in mice devoid of normal cellular prion protein, and have shown that these animals present an increased excitability in this area by the lower threshold (20 Hz) to generate long-term potentiation (LTP) in hippocampal dentate gyrus when compared to wild-type animals. The mice devoid of normal cellular prion protein are also more sensitive to the blocking effects of dizocilpine and 2-amino-5-phosphonopentanoic acid on the hippocampal long-term potentiation generation. In situ hydridization experiments demonstrated overexpression of the mRNAs for the N-methyl-D-aspartate (NMDA) receptor NR2A and NR2B subunits in mice devoid of normal cellular prion protein. Therefore, our results indicate that these animals have an increased hippocampal synaptic plasticity which can be explained by a facilitated glutamatergic transmission. The higher expression of specific N-methyl-d-aspartate receptor subunits may account for these effects.


Assuntos
Giro Denteado/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas PrPC/genética , Animais , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Expressão Gênica , Hibridização In Situ , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética
17.
Brain Res ; 1008(1): 54-60, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15081382

RESUMO

The chronic diazepam administration in rats has been show from our previous results, to produce an increased synaptic plasticity. Furthermore, this occurs with a concomitant over expression of the mRNA NR1 and NR2B N-methyl-D-aspartate receptor subunits. MK-801, a non-competitive antagonist of N-methyl-D-aspartate receptor, impairs both the development of conditioned tolerance to diazepam and the hippocampal long-term potentiation generation. In the present study, we have further investigated the hippocampal glutamatergic transmission in the development of tolerance to diazepam. Our results demonstrate that the development of tolerance to the hypolocomotive effect of diazepam, along with the increased hippocampal synaptic plasticity and the associated over expression of the mRNA NR1 and NR2B N-methyl-D-aspartate receptor subunits, were blocked by previous MK-801 administration. We suggest that the participation of hippocampal glutamatergic transmission is relevant to increased hippocampal synaptic plasticity, the latter being a neurobiological mechanism behind the development of the conditioned tolerance to diazepam.


Assuntos
Diazepam/administração & dosagem , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Análise de Variância , Animais , Comportamento Animal , Contagem de Células/métodos , Interações Medicamentosas , Tolerância a Medicamentos , Estimulação Elétrica/métodos , Eletrofisiologia/métodos , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/efeitos da radiação , Moduladores GABAérgicos/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Hibridização In Situ/métodos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/efeitos da radiação , Masculino , Atividade Motora/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética
18.
Behav Brain Res ; 144(1-2): 119-24, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12946602

RESUMO

The development of tolerance to the hypolocomotor effects of Diazepam (DZ) is thought to be a contingent or learning phenomenon. In previous reports, we demonstrated a positive correlation between the development of tolerance to the sedative effects of DZ and hippocampal synaptic plasticity. Furthermore, previous exposure to the drug administration context blocks both the tolerance to sedative effects of DZ and the increased hippocampal plasticity. The results of the present investigation show that the development of tolerance to hypolocomotor action of DZ (5 mg/kg/day) for 4 days results in a significant increase in the hybridization signals for mRNA for N-methyl-D-aspartate (NMDA) glutamatergic receptor NR1 and NR2B subunits in the hippocampal dentate gyrus. Furthermore, we have observed more benzodiazepine binding sites in the hippocampus of non-tolerant animals. We conclude that the increased hippocampal synaptic efficacy in DZ tolerant rats, may be NMDA receptor dependent due to an increased recombinant NR1-NR2B complex observed in the hippocampal formation of tolerant rats.


Assuntos
Diazepam/farmacologia , Tolerância a Medicamentos , Moduladores GABAérgicos/farmacologia , Hipocampo/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/biossíntese , Animais , Benzodiazepinas/farmacocinética , Sítios de Ligação , Contagem de Células , Expressão Gênica , Hipocampo/anatomia & histologia , Hipocampo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Masculino , Atividade Motora/efeitos dos fármacos , Sondas de Oligonucleotídeos , RNA Mensageiro/biossíntese , RNA Mensageiro/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Sinaptossomos/efeitos dos fármacos
19.
Peptides ; 24(9): 1403-11, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14706556

RESUMO

The present study attempts to determine which mechanisms underlie the retrograde facilitation of memory induced by microinjection hippocampal melanin-concentrating hormone (MCH) on the inhibitory avoidance paradigm. Previous reports using this test on the hippocampus suggest that NMDA receptor-mediated mechanisms are involved in memory processing and are also necessary for the induction of long-term potentiation (LTP) of the hippocampal dentate gyrus. In addition, alterations in expression of synaptic NMDA subunits in the hippocampus have been associated with memory formation of an inhibitory avoidance task. We have studied the effects of the neuropeptide upon the electrophysiological parameters using hippocampal slices from rats injected with the peptide and tested in step-down tests as well as possible changes in the mRNA expression of NMDA receptor subunits. We postulate that the increased facility to induce LTP, and the overexpression of this N-methyl-D-aspartate mRNA receptor subunits induced by MCH, could be behind the retrograde facilitation observed after MCH hippocampal microinjection.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hormônios Hipotalâmicos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Melaninas/farmacologia , N-Metilaspartato/metabolismo , Hormônios Hipofisários/farmacologia , Subunidades Proteicas/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Eletrofisiologia , Hipocampo/metabolismo , Hibridização In Situ , Injeções , Potenciação de Longa Duração/fisiologia , Masculino , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
20.
Behav Brain Res ; 136(1): 75-81, 2002 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12385792

RESUMO

Early results from our laboratory have demonstrated a positive correlation between increased hippocampal synaptic plasticity and development of tolerance to hypolocomotive effect of Diazepam (DZ). We have found recently, that pre-exposure to DZ administration context impairs increase of hippocampal synaptic plasticity in conjunction with tolerance to DZ. These findings have suggested, that the tolerance to DZ is context specific. Furthermore, the hippocampus can be critically involved in the behavioral expression of conditioned tolerance to DZ. The results of the present investigation show that animals chronically treated with DZ for 18 days exhibit withdrawal signs, evaluated as an increased anxiety in an elevated plus maze. These animals also show, a facilitation in the threshold to induce long-term potentiation in the hippocampal formation. These phenomena have a strong dependency on the drug administration context, since both are reversed after the introduction of some changes in the drug administration environment. Furthermore, the alteration of some environmental cues increased the locomotive activity in animals that did not show anxiety as a withdrawal signs. We conclude that a common neural system could underlie the behavioral expression of the conditioned tolerance and dependence on DZ.


Assuntos
Ansiolíticos/efeitos adversos , Diazepam/efeitos adversos , Meio Ambiente , Síndrome de Abstinência a Substâncias/psicologia , Animais , Ansiedade/psicologia , Sinais (Psicologia) , Giro Denteado/fisiologia , Eletrofisiologia , Hipocampo/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Atividade Motora/fisiologia , Ratos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...