Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 81: 1005-11, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26416239

RESUMO

In plants, adverse conditions often induce an increase in reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). H2O2 is reduced to water, and thus becomes detoxified by enzymes such as Cytisus multiflorus peroxidase (CMP). Here, the steady-state kinetics of the H2O2-supported oxidation of different organic substrates by CMP was investigated. Analysis of the initial rates vs. H2O2 and reducing substrate concentrations proved to be consistent with a substrate-inhibited Ping-Pong Bi-Bi reaction mechanism. The phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and affords an interpretation of the effects in terms of the kinetic parameters [Formula: see text] , [Formula: see text] , kcat, [Formula: see text] , [Formula: see text] and of the microscopic rate constants, k1 and k3, of the shared three-step catalytic cycle of peroxidases.


Assuntos
Cytisus/enzimologia , Peroxidase/metabolismo , Biocatálise , Guaiacol/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Modelos Moleculares , Oxirredução , Peroxidase/antagonistas & inibidores , Especificidade por Substrato
2.
Int J Biol Macromol ; 72: 718-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25246165

RESUMO

New plant peroxidase has been isolated to homogeneity from the white Spanish broom Cytisus multiflorus. The enzyme purification steps included homogenization, NH(4)SO(4) precipitation, extraction of broom colored compounds and consecutive chromatography on Phenyl-Sepharose, HiTrap™ SP HP and Superdex-75 and 200. The novel peroxidase was characterized as having a molecular weight of 50 ± 3 kDa. Steady-state tryptophan fluorescence and far-UV circular dichroism (CD) studies, together with enzymatic assays, were carried out to monitor the structural stability of C. multiflorus peroxidase (CMP) at pH 7.0. Thus changes in far-UV CD corresponded to changes in the overall secondary structure of enzyme, while changes in intrinsic tryptophan fluorescence emission corresponded to changes in the tertiary structure of the enzyme. It is shown that the process of CMP denaturation can be interpreted with sufficient accuracy in terms of the simple kinetic scheme, N ⟶ kD, where k is a first-order kinetic constant that changes with temperature following the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.


Assuntos
Cytisus/enzimologia , Estabilidade Enzimática , Peroxidase/isolamento & purificação , Dicroísmo Circular , Peroxidase/química , Desnaturação Proteica , Estrutura Secundária de Proteína , Temperatura
3.
Anal Bioanal Chem ; 404(8): 2377-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22932812

RESUMO

Peroxidase-catalysed reactions are used in a wide variety of analytical applications, most of them based on the final quantification of hydrogen peroxide. Clinical tests for glucose, cholesterol, creatine, creatinine or uric acid in blood or urine and enzyme-linked immunosorbent assays for pesticides, hepatitis or acquired immune deficiency syndrome are good examples of such applications. The most widely used and commercially available peroxidase for biotechnological processes and analytical applications is horseradish peroxidase followed, although in much lower proportion, by soybean peroxidase. The high commercial interest in peroxidases has led to the search for new sources of these enzymes. This work describes the analytical use of lentil plant peroxidase (LPP), which is a new peroxidase extracted from lentil plants (Lens culinaris Medikus); an abundant post-harvest agricultural waste in the area of Castilla y León (Spain). A procedure for the quantification of hydrogen peroxide in urine is first proposed using crude extract of lentil plant instead of the purified enzyme. This procedure is then applied to the determination of sarcosine; a natural amino acid that has attracted considerable interest in clinical diagnostics since urinary sarcosine was proposed and later questioned as a biomarker for prostate cancer. Under the action of sarcosine oxidase, sarcosine is oxidized by molecular oxygen to give glycine, formaldehyde and hydrogen peroxide that is quantified according to the previously proposed procedure. The limit of detection for both hydrogen peroxide and sarcosine is around 5 × 10(-7) M. In the determination of sarcosine, the high selectivity of the overall enzymatic reaction, the simple sample treatment and instrumentation, the high-sample throughput and the use of LPP in the plant extract instead of the purified enzyme provide a rapid and inexpensive procedure with characteristics very suitable for routine analysis in a clinical laboratory.


Assuntos
Peróxido de Hidrogênio/urina , Lens (Planta)/química , Peroxidases/química , Extratos Vegetais/química , Sarcosina/urina , Urinálise/métodos , Humanos , Cinética , Fatores de Tempo , Urinálise/economia
4.
J Agric Food Chem ; 60(19): 4765-72, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22534011

RESUMO

Aqueous crude extracts of a series of plant wastes (agricultural, wild plants, residues from sports activities (grass), ornamental residues (gardens)) from 17 different plant species representative of the typical biodiversity of the Iberian peninsula were investigated as new sources of peroxidases (EC 1.11.1.7). Of these, lentil (Lens culinaris L.) stubble crude extract was seen to provide one of the highest specific peroxidase activities, catalyzing the oxidation of guaiacol in the presence of hydrogen peroxide to tetraguaiacol, and was used for further studies. For the optimum extraction conditions found, the peroxidase activity in this crude extract (110 U mL(-1)) did not vary for at least 15 months when stored at 4 °C (k(inact) = 0.146 year(-1), t(1/2 inact) = 4.75 year), whereas, for comparative purposes, the peroxidase activity (60 U mL(-1)) of horseradish (Armoracia rusticana L.) root crude extract, obtained and stored under the same conditions, showed much faster inactivation kinetics (k(inact) = 2.2 × 10(-3) day(-1), t(1/2 inact) = 315 days). Using guaiacol as an H donor and a universal buffer (see above), all crude extract samples exhibited the highest peroxidase activity in the pH range between 4 and 7. Once semipurified by passing the crude extract through hydrophobic chromatography on phenyl-Sepharose CL-4B, the novel peroxidase (LSP) was characterized as having a purity number (RZ) of 2.5 and three SDS-PAGE electrophoretic bands corresponding to molecular masses of 52, 35, and 18 kDa. The steady-state kinetic study carried out on the H(2)O(2)-mediated oxidation of guaiacol by the catalytic action of this partially purified peroxidase pointed to apparent Michaelian kinetic behavior (K(m)(appH(2)O(2)) = 1.87 mM; V(max)(appH(2)O(2)) = 6.4 mM min(-1); K(m)(app guaicol) = 32 mM; V(max)(app guaicol) = 9.1 mM min(-1)), compatible with the two-substrate ping-pong mechanism generally accepted for peroxidases. Finally, after the effectiveness of the crude extracts of LSP in oxidizing and removing from solution a series of last-generation dyes present in effluents from textile industries (1) had been checked, a steady-state kinetic study of the H(2)O(2)-mediated oxidation and decolorization of Green Domalan BL by the catalytic action of the lentil stubble extract was carried out, with the observation of the same apparent Michaelian kinetic behavior (K(m)(appGD) = 471 µM; V(max)(appGD)= 23 µM min(-1)). Further studies are currently under way to address the application of this LSP crude extract for the clinical and biochemical analysis of biomarkers.


Assuntos
Lens (Planta)/enzimologia , Peroxidase/química , Proteínas de Plantas/química , Agricultura , Estabilidade Enzimática , Resíduos Industriais/análise , Cinética , Lens (Planta)/química , Peroxidase/isolamento & purificação , Peroxidase/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...