Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1045269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845442

RESUMO

Periodic Cheyne-Stokes breathing (CSB) oscillating between apnea and crescendo-decrescendo hyperpnea is the most common central apnea. Currently, there is no proven therapy for CSB, probably because the fundamental pathophysiological question of how the respiratory center generates this form of breathing instability is still unresolved. Therefore, we aimed to determine the respiratory motor pattern of CSB resulting from the interaction of inspiratory and expiratory oscillators and identify the neural mechanism responsible for breathing regularization induced by the supplemental CO2 administration. Analysis of the inspiratory and expiratory motor pattern in a transgenic mouse model lacking connexin-36 electrical synapses, the neonatal (P14) Cx36 knockout male mouse, with a persistent CSB, revealed that the reconfigurations recurrent between apnea and hyperpnea and vice versa result from cyclical turn on/off of active expiration driven by the expiratory oscillator, which acts as a master pacemaker of respiration and entrains the inspiratory oscillator to restore ventilation. The results also showed that the suppression of CSB by supplemental 12% CO2 in inhaled air is due to the stabilization of coupling between expiratory and inspiratory oscillators, which causes the regularization of respiration. CSB rebooted after washout of CO2 excess when the inspiratory activity depressed again profoundly, indicating that the disability of the inspiratory oscillator to sustain ventilation is the triggering factor of CSB. Under these circumstances, the expiratory oscillator activated by the cyclic increase of CO2 behaves as an "anti-apnea" center generating the crescendo-decrescendo hyperpnea and periodic breathing. The neurogenic mechanism of CSB identified highlights the plasticity of the two-oscillator system in the neural control of respiration and provides a rationale base for CO2 therapy.

2.
Physiol Rep ; 9(21): e15109, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34755471

RESUMO

Neural circuits at the brainstem involved in the central generation of the motor patterns of respiration and cardiorespiratory chemoreflexes organize as cell assemblies connected by chemical and electrical synapses. However, the role played by the electrical connectivity mainly mediated by connexin36 (Cx36), which expression reaches peak value during the postnatal period, is still unknown. To address this issue, we analyzed here the respiratory phenotype of a mouse strain devoid constitutively of Cx36 at P14. Male Cx36-knockout mice at rest showed respiratory instability of variable degree, including a periodic Cheyne-Stokes breathing. Moreover, mice lacking Cx36 exhibited exacerbated chemoreflexes to normoxic and hypoxic hypercapnia characterized by a stronger inspiratory/expiratory coupling due to an increased sensitivity to CO2 . Deletion of Cx36 also impaired the generation of the recurrent episodes of transient bradycardia (ETBs) evoked during hypercapnic chemoreflexes; these EBTs constituted a powerful mechanism of cardiorespiratory coupling capable of improving alveolar gaseous exchange under hypoxic hypercapnia conditions. Approximately half of the homo- and heterozygous Cx36KO, but none WT, mice succumbed by respiratory arrest when submitted to hypoxia-hypercapnia, the principal exogenous stressor causing sudden infant death syndrome (SIDS). The early suppression of EBTs, which worsened arterial O2  saturation, and the generation of a paroxysmal generalized clonic-tonic activity, which provoked the transition from eupneic to gasping respiration, were the critical events causing sudden death in the Cx36KO mice. These results indicate that Cx36 expression plays a pivotal role in respiratory control, cardiorespiratory coordination, and protection against SIDS at the postnatal period.


Assuntos
Conexinas/genética , Respiração , Morte Súbita do Lactente/genética , Animais , Conexinas/metabolismo , Feminino , Deleção de Genes , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reflexo , Centro Respiratório/metabolismo , Centro Respiratório/fisiopatologia , Proteína delta-2 de Junções Comunicantes
3.
Cereb Cortex ; 30(5): 3184-3197, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31819941

RESUMO

Approaches to control epilepsy, one of the most important idiopathic brain disorders, are of great importance for public health. We have previously shown that in sympathetic neurons the neuronal isoform of the serum and glucocorticoid-regulated kinase (SGK1.1) increases the M-current, a well-known target for seizure control. The effect of SGK1.1 activation on kainate-induced seizures and neuronal excitability was studied in transgenic mice that express a permanently active form of the kinase, using electroencephalogram recordings and electrophysiological measurements in hippocampal brain slices. Our results demonstrate that SGK1.1 activation leads to reduced seizure severity and lower mortality rates following status epilepticus, in an M-current-dependent manner. EEG is characterized by reduced number, shorter duration, and early termination of kainate-induced seizures in the hippocampus and cortex. Hippocampal neurons show decreased excitability associated to increased M-current, without altering basal synaptic transmission or other neuronal properties. Altogether, our results reveal a novel and selective anticonvulsant pathway that promptly terminates seizures, suggesting that SGK1.1 activation can be a potent factor to secure the brain against permanent neuronal damage associated to epilepsy.


Assuntos
Hipocampo/metabolismo , Proteínas Imediatamente Precoces/genética , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Convulsões/genética , Estado Epiléptico/genética , Processamento Alternativo , Animais , Eletroencefalografia , Agonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Proteínas Imediatamente Precoces/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Ácido Caínico/toxicidade , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/fisiopatologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia
4.
PLoS One ; 13(1): e0189931, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29304108

RESUMO

Behavioral states alternate between wakefulness (wk), rapid eye movement (rem) and non-rem (nrem) sleep at time scale of hours i.e., light and dark cycle rhythms and from several tens of minutes to seconds (i.e., brief awakenings during sleep). Using statistical analysis of bout duration, Markov chains of sleep-wk dynamics and quantitative EEG analysis, we evaluated the influence of light/dark (ld) changes on brain function along the sleep-wk cycle. Bout duration (bd) histograms and Kaplan-Meier (km) survival curves of wk showed a bimodal statistical distribution, suggesting that two types of wk do exist: brief-wk (wkb) and long-wk (wkl). Light changes modulated specifically wkl bouts, increasing its duration during active/dark period. In contrast, wkb, nrem and rem bd histograms and km curves did not change significantly along ld cycle. Hippocampal eeg of both types of wk were different: in comparison wkb showed a lower spectral power in fast gamma and fast theta bands and less emg tone. After fitting a four-states Markov chain to mice hypnograms, moreover in states transition probabilities matrix was found that: in dark/active period, state-maintenance probability of wkl increased, and probability of wkl to nrem transition decreased; the opposite was found in light period, favoring the hypothesis of the participation of brief wk into nrem-rem intrinsic sleep cycle, and the role of wkl in SWS homeostasis. In conclusion, we propose an extended Markov model of sleep using four stages (wkl, nrem, rem, wkb) as a fully adequate model accounting for both modulation of sleep-wake dynamics based on the differential regulation of long-wk (high gamma/theta) epochs during dark and light phases.


Assuntos
Escuridão , Luz , Sono/fisiologia , Vigília/fisiologia , Animais , Eletroencefalografia , Masculino , Cadeias de Markov , Camundongos , Camundongos Endogâmicos C57BL
5.
Neuropharmacology ; 75: 479-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23587648

RESUMO

Connexins are thought to solely mediate cell-to-cell communication by forming gap junction channels composed of two membrane-spanning hemichannels positioned end-to-end. However, many if not all connexin isoforms also form functional hemichannels (i.e., the precursors of complete channels) that mediate the rapid exchange of ions, second messengers and metabolites between the cell interior and the interstitial space. Electrical and molecular signaling via connexin hemichannels is now widely recognized to be important in many physiological scenarios and pathological conditions. Indeed, mutations in connexins that alter hemichannel function have been implicated in several diseases. Here, we present a comprehensive overview of how hemichannel activity is tightly regulated by membrane potential and the external calcium concentration. In addition, we discuss the genetic mutations known to alter hemichannel function and their deleterious effects, of which a better understanding is necessary to develop novel therapeutic approaches for diseases caused by hemichannel dysfunction. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.


Assuntos
Cálcio/metabolismo , Conexinas/metabolismo , Líquido Extracelular/metabolismo , Potenciais da Membrana/fisiologia , Animais , Conexinas/genética , Junções Comunicantes/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...