Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(6): 4290-4300, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38510664

RESUMO

Interstitial carbon-doped RuO2 catalyst with the newly reported ruthenium oxycarbonate phase is a key component for low-temperature CO2 methanation. However, a crucial factor is the stability of interstitial carbon atoms, which can cause catalyst deactivation when removed during the reaction. In this work, the stabilization mechanism of the ruthenium oxycarbonate active phase under reaction conditions is studied by combining advanced operando spectroscopic tools with catalytic studies. Three sequential processes: carbon diffusion, metal oxide reduction, and decomposition of the oxycarbonate phase and their influence by the reaction conditions, are discussed. We present how the reaction variables and catalyst composition can promote carbon diffusion, stabilizing the oxycarbonate catalytically active phase under steady-state reaction conditions and maintaining catalyst activity and stability over long operation times. In addition, insights into the reaction mechanism and a detailed analysis of the catalyst composition that identifies an adequate balance between the two phases, i.e., ruthenium oxycarbonate and ruthenium metal, are provided to ensure an optimum catalytic behavior.

2.
Sensors (Basel) ; 23(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430534

RESUMO

Nanostructured tungsten disulfide (WS2) is one of the most promising candidates for being used as active nanomaterial in chemiresistive gas sensors, as it responds to hydrogen gas at room temperature. This study analyzes the hydrogen sensing mechanism of a nanostructured WS2 layer using near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and density functional theory (DFT). The W 4f and S 2p NAP-XPS spectra suggest that hydrogen makes physisorption on the WS2 active surface at room temperature and chemisorption on tungsten atoms at temperatures above 150 °C. DFT calculations show that a hydrogen molecule physically adsorbs on the defect-free WS2 monolayer, while it splits and makes chemical bonds with the nearest tungsten atoms on the sulfur point defect. The hydrogen adsorption on the sulfur defect causes a large charge transfer from the WS2 monolayer to the adsorbed hydrogen. In addition, it decreases the intensity of the in-gap state, which is generated by the sulfur point defect. Furthermore, the calculations explain the increase in the resistance of the gas sensor when hydrogen interacts with the WS2 active layer.

3.
Nat Mater ; 22(6): 762-768, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142737

RESUMO

The generation of methane fuel using surplus renewable energy with CO2 as the carbon source enables both the decarbonization and substitution of fossil fuel feedstocks. However, high temperatures are usually required for the efficient activation of CO2. Here we present a solid catalyst synthesized using a mild, green hydrothermal synthesis that involves interstitial carbon doped into ruthenium oxide, which enables the stabilization of Ru cations in a low oxidation state and a ruthenium oxycarbonate phase to form. The catalyst shows an activity and selectivity for the conversion of CO2 into methane at lower temperatures than those of conventional catalysts, with an excellent long-term stability. Furthermore, this catalyst is able to operate under intermittent power supply conditions, which couples very well with electricity production systems based on renewable energies. The structure of the catalyst and the nature of the ruthenium species were acutely characterized by combining advanced imaging and spectroscopic tools at the macro and atomic scales, which highlighted the low-oxidation-state Ru sites (Run+, 0 < n < 4) as responsible for the high catalytic activity. This catalyst suggests alternative perspectives for materials design using interstitial dopants.

4.
ACS Appl Nano Mater ; 6(9): 7173-7185, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37205295

RESUMO

Ni-Fe nanocatalysts supported on CeO2 have been prepared for the catalysis of methane steam reforming (MSR) aiming for coke-resistant noble metal-free catalysts. The catalysts have been synthesized by traditional incipient wetness impregnation as well as dry ball milling, a green and more sustainable preparation method. The impact of the synthesis method on the catalytic performance and the catalysts' nanostructure has been investigated. The influence of Fe addition has been addressed as well. The reducibility and the electronic and crystalline structure of Ni and Ni-Fe mono- and bimetallic catalysts have been characterized by temperature programmed reduction (H2-TPR), in situ synchrotron X-ray diffraction (SXRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Their catalytic activity was tested between 700 and 950 °C at 108 L gcat-1 h-1 and with the reactant flow varying between 54 and 415 L gcat-1 h-1 at 700 °C. Hydrogen production rates of 67 mol gmet-1 h-1 have been achieved. The performance of the ball-milled Fe0.1Ni0.9/CeO2 catalyst was similar to that of Ni/CeO2 at high temperatures, but Raman spectroscopy revealed a higher amount of highly defective carbon on the surface of Ni-Fe nanocatalysts. The reorganization of the surface under MSR of the ball-milled NiFe/CeO2 has been monitored by in situ near-ambient pressure XPS experiments, where a strong reorganization of the Ni-Fe nanoparticles with segregation of Fe toward the surface has been observed. Despite the catalytic activity being lower in the low-temperature regime, Fe addition for the milled nanocatalyst increased the coke resistance and could be an efficient alternative to industrial Ni/Al2O3 catalysts.

5.
Nanoscale ; 15(3): 1068-1075, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36541666

RESUMO

Dynamic covalent chemistry is a powerful approach to design covalent organic frameworks, where high crystallinity is achieved through reversible bond formation. Here, we exploit near-ambient pressure X-ray photoelectron spectroscopy to elucidate the reversible formation of a two-dimensional boroxine framework. By in situ mapping the pressure-temperature parameter space, we identify the regions where the rates of the condensation and hydrolysis reactions become dominant, being the key to enable the thermodynamically controlled growth of crystalline frameworks.

6.
ACS Catal ; 12(21): 13781-13791, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366765

RESUMO

Hydrogen permeable electrodes can be utilized for electrolytic ammonia synthesis from dinitrogen, water, and renewable electricity under ambient conditions, providing a promising route toward sustainable ammonia. The understanding of the interactions of adsorbing N and permeating H at the catalytic interface is a critical step toward the optimization of this NH3 synthesis process. In this study, we conducted a unique in situ near ambient pressure X-ray photoelectron spectroscopy experiment to investigate the solid-gas interface of a Ni hydrogen permeable electrode under conditions relevant for ammonia synthesis. Here, we show that the formation of a Ni oxide surface layer blocks the chemisorption of gaseous dinitrogen. However, the Ni 2p and O 1s XPS spectra reveal that electrochemically driven permeating atomic hydrogen effectively reduces the Ni surface at ambient temperature, while H2 does not. Nitrogen gas chemisorbs on the generated metallic sites, followed by hydrogenation via permeating H, as adsorbed N and NH3 are found on the Ni surface. Our findings suggest that the first hydrogenation step to NH and the NH3 desorption might be limiting under the operating conditions. The study was then extended to Fe and Ru surfaces. The formation of surface oxide and nitride species on iron blocks the H permeation and prevents the reaction to advance; while on ruthenium, the stronger Ru-N bond might favor the recombination of permeating hydrogen to H2 over the hydrogenation of adsorbed nitrogen. This work provides insightful results to aid the rational design of efficient electrolytic NH3 synthesis processes based on but not limited to hydrogen permeable electrodes.

7.
Nat Commun ; 13(1): 6070, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241622

RESUMO

The solid electrolyte interphase (SEI) that forms on Li-ion battery anodes is critical to their long-term performance, however observing SEI formation processes at the buried electrode-electrolyte interface is a significant challenge. Here we show that operando soft X-ray absorption spectroscopy in total electron yield mode can resolve the chemical evolution of the SEI during electrochemical formation in a Li-ion cell, with nm-scale interface sensitivity. O, F, and Si K-edge spectra, acquired as a function of potential, reveal when key reactions occur on high-capacity amorphous Si anodes cycled with and without fluoroethylene carbonate (FEC). The sequential formation of inorganic (LiF) and organic (-(C=O)O-) components is thereby revealed, and results in layering of the SEI. The addition of FEC leads to SEI formation at higher potentials which is implicated in the rapid healing of SEI defects and the improved cycling performance observed. Operando TEY-XAS offers new insights into the formation mechanisms of electrode-electrolyte interphases and their stability for a wide variety of electrode materials and electrolyte formulations.

8.
J Am Chem Soc ; 144(33): 15363-15371, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960901

RESUMO

Curved crystals are a simple but powerful approach to bridge the gap between single crystal surfaces and nanoparticle catalysts, by allowing a rational assessment of the role of active step sites in gas-surface reactions. Using a curved Rh(111) crystal, here, we investigate the effect of A-type (square geometry) and B-type (triangular geometry) atomic packing of steps on the catalytic CO oxidation on Rh at millibar pressures. Imaging the crystal during reaction ignition with laser-induced CO2 fluorescence demonstrates a two-step process, where B-steps ignite at lower temperature than A-steps. Such fundamental dissimilarity is explained in ambient pressure X-ray photoemission (AP-XPS) experiments, which reveal partial CO desorption and oxygen buildup only at B-steps. AP-XPS also proves that A-B step asymmetries extend to the active stage: at A-steps, low-active O-Rh-O trilayers buildup immediately after ignition, while highly active chemisorbed O is the dominant species on B-type steps. We conclude that B-steps are more efficient than A-steps for the CO oxidation.

9.
Nanoscale ; 11(38): 17920-17930, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31553338

RESUMO

The combination of scanning probe microscopy and ambient pressure X-ray photoelectron spectroscopy opens up new perspectives for the study of combined surface chemical, electrochemical and electromechanical properties at the nanoscale, providing both nanoscale resolution of physical information and the chemical sensitivity required to identify surface species and bulk ionic composition. In this work, we determine the nature and evolution over time of surface chemical species obtained after water-mediated redox reactions on Pb(Zr0.2,Ti0.8)O3 thin films with opposite as-grown polarization states. Starting with intrinsically different surface chemical composition on the oppositely polarized films (as a result of their ferroelectric-dominated interaction with environmental water), we identify the reversible and irreversible electrochemical reactions under an external electric field, distinguishing switching and charging events. We find that while reversible ionic displacements upon polarization switching dominate screening in the bulk of the sample, polarization dependent irreversible redox reactions determine surface chemical composition, which reveals itself as a characteristic fingerprint of the ferroelectric polarization switching history.

10.
J Synchrotron Radiat ; 26(Pt 4): 1288-1293, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274456

RESUMO

Platinum thin films activated ex situ by oxygen plasma become reduced by the combined effect of an intense soft X-ray photon beam and condensed water. The evolution of the electronic structure of the surface has been characterized by near-ambient-pressure photoemission and mimics the inverse two-step sequence observed in the electro-oxidation of platinum, i.e. the surface-oxidized platinum species are reduced first and then the adsorbed species desorb in a second step leading to a surface dominated by metallic platinum. The comparison with measurements performed under high-vacuum conditions suggests that the reduction process is mainly induced by the reactive species generated by the radiolysis of water. When the photon flux is decreased, then the reduction process becomes slower.

11.
J Phys Chem C Nanomater Interfaces ; 123(13): 8421-8428, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30976377

RESUMO

Surface segregation and restructuring in size-selected CuNi nanoparticles were investigated via near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at various temperatures in different gas environments. Particularly in focus were structural and morphological changes occurring under CO2 hydrogenation conditions in the presence of carbon monoxide (CO) in the reactant gas mixture. Nickel surface segregation was observed when only CO was present as adsorbate. The segregation trend is inverted in a reaction gas mixture consisting of CO2, H2, and CO, resulting in an increase of copper concentration on the surface. Density functional theory calculations attributed the inversion of the segregation trend to the formation of a stable intermediate on the nanocatalyst surface (CH3O) in the CO-containing reactant mixture, which modifies the nickel segregation energy, thus driving copper to the surface. The promoting role of CO for the synthesis of methanol was demonstrated by catalytic characterization measurements of silica-supported CuNi NPs in a fixed-bed reactor, revealing high methanol selectivity (over 85%) at moderate pressures (20 bar). The results underline the important role of intermediate reaction species in determining the surface composition of bimetallic nanocatalysts and help understand the effect of CO cofeed on the properties of CO2 hydrogenation catalysts.

12.
Phys Chem Chem Phys ; 21(9): 4920-4930, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30758026

RESUMO

Water dissociation on oxides is of great interest because its fundamental aspects are still not well understood and it has implications in many processes, from ferroelectric polarization screening phenomena to surface catalysis and surface chemistry on oxides. In situ water dissociation and redox processes on metal oxide perovskites which easily expose TiO2-terminated surfaces, such as SrTiO3, BaTiO3 or Pb(Zr,Ti)O3, are studied by ambient pressure XPS, as a function of water vapour pressure. From the analysis of the O1s spectrum, we determine the presence of different types of oxygen based species, from hydroxyl groups, either bound to Ti4+ and metal sites or lattice oxygen, to different peroxide compounds, and propose a model for the adsorbate layer composition, valid for environmental conditions. From the XPS analysis, we describe the existing surface redox reactions for metal oxide perovskites, occurring at different water vapour pressures. Among them, peroxide species resulting from surface oxidative reactions are correlated with the presence of Ti4+ ions, which are observed to specifically promote surface oxidation and water dissociation as compared to other metals. Finally, surface peroxidation is enhanced by X-ray beam irradiation, leading to a higher coverage of peroxide species after beam overexposure and by ferroelectric polarization, demonstrating the enhancement of the reactivity of the surfaces of ferroelectric materials due to the effect of internal electric fields.

13.
Nat Commun ; 9(1): 4986, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478316

RESUMO

Sunlight plays a critical role in the development of emerging sustainable energy conversion and storage technologies. Light-induced CO2 reduction by artificial photosynthesis is one of the cornerstones to produce renewable fuels and environmentally friendly chemicals. Interface interactions between plasmonic metal nanoparticles and semiconductors exhibit improved photoactivities under a wide range of the solar spectrum. However, the photo-induced charge transfer processes and their influence on photocatalysis with these materials are still under debate, mainly due to the complexity of the involved routes occurring at different timescales. Here, we use a combination of advanced in situ and time-resolved spectroscopies covering different timescales, combined with theoretical calculations, to unravel the overall mechanism of photocatalytic CO2 reduction by Ag/TiO2 catalysts. Our findings provide evidence of the key factors determining the enhancement of photoactivity under ultraviolet and visible irradiation, which have important implications for the design of solar energy conversion materials.

14.
J Am Chem Soc ; 140(47): 16245-16252, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30431270

RESUMO

Understanding nanoparticle catalysis requires novel approaches in which adjoining crystal orientations can be studied under the same reactive conditions. Here we use a curved palladium crystal and near-ambient pressure X-ray photoemission spectroscopy to characterize chemical species during the catalytic oxidation of CO in a whole set of surfaces vicinal to the (111) direction simultaneously. By stabilizing the reaction at fixed temperatures around the ignition point, we observe a strong variation of the catalytic activity across the curved surface. Such spatial modulation of the reaction stage is straightforwardly mapped through the photoemission signal from active oxygen species and poisoning CO, which are shown to coexist in a transient regime that depends on the vicinal angle. Line-shape analysis and direct comparison with ultrahigh vacuum experiments help identifying and quantifying all such surface species, allowing us to reveal the presence of surface oxides during reaction ignition and cooling-off.

15.
J Phys Chem B ; 122(2): 737-744, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28829130

RESUMO

Atmospheric pressure X-ray spectroscopy techniques based on soft X-ray excitation can provide powerful interface-sensitive chemical information about a solid surface immersed in a gas or liquid environment. However, X-ray illumination of such dense phases can lead to the generation of considerable quantities of radical species by radiolysis. Soft X-ray absorption measurements of Cu films in both air and aqueous alkali halide solutions reveal that this can cause significant evolution of the Cu oxidation state. In air and NaOH (0.1 M) solutions, the Cu is oxidized toward CuO, while the addition of small amounts of CH3OH to the solution leads to reduction toward Cu2O. For Ni films in NaHCO3 solutions, the oxidation state of the surface is found to remain stable under X-ray illumination and can be electrochemically cycled between a reduced and oxidized state. We provide a consistent explanation for this behavior based on the products of X-ray-induced radiolysis in these different environments and highlight a number of general approaches that can mitigate radiolysis effects when performing operando X-ray measurements.

16.
Langmuir ; 33(26): 6449-6456, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28586225

RESUMO

One-dimensional (1D) nanostructured surfaces based on high-density arrays of nanowires and nanotubes of photoactive titanium dioxide (TiO2) present a tunable wetting behavior from superhydrophobic to superhydrophilic states. These situations are depicted in a reversible way by simply irradiating with ultraviolet light (superhydrophobic to superhydrophilic) and storage in dark. In this article, we combine in situ environmental scanning electron microscopy (ESEM) and near ambient pressure photoemission analysis (NAPP) to understand this transition. These experiments reveal complementary information at microscopic and atomic level reflecting the surface wettability and chemical state modifications experienced by these 1D surfaces upon irradiation. We pay special attention to the role of the water condensation mechanisms and try to elucidate the relationship between apparent water contact angles of sessile drops under ambient conditions at the macroscale with the formation of droplets by water condensation at low temperature and increasing humidity on the nanotubes' surfaces. Thus, for the as-grown nanotubes, we reveal a metastable and superhydrophobic Cassie state for sessile drops that tunes toward water dropwise condensation at the microscale compatible with a partial hydrophobic Wenzel state. For the UV-irradiated surfaces, a filmwise wetting behavior is observed for both condensed water and sessile droplets. NAPP analyses show a hydroxyl accumulation on the as-grown nanotubes surfaces during the exposure to water condensation conditions, whereas the water filmwise condensation on a previously hydroxyl enriched surface is proved for the superhydrophilic counterpart.

17.
Inorg Chem ; 54(23): 11542-9, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26574775

RESUMO

Inorganic clathrate materials are of great fundamental interest and potential practical use for application as thermoelectric materials in freon-free refrigerators, waste-heat converters, direct solar thermal energy converters, and many others. Experimental studies of their electronic structure and bonding have been, however, strongly restricted by (i) the crystal size and (ii) essential difficulties linked with the clean surface preparation. Overcoming these handicaps, we present for the first time a comprehensive picture of the electronic band structure and the chemical bonding for the Sn(24-x-δ)InxAs(22-y)I8 clathrates obtained by means of photoelectron spectroscopy and complementary quantum modeling.

18.
Science ; 346(6209): 620-3, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25359970

RESUMO

Catalysts used for heterogeneous processes are usually composed of metal nanoparticles dispersed over a high-surface-area support. In recent years, near-ambient pressure techniques have allowed catalyst characterization under operating conditions, overcoming the pressure gap effect. However, the use of model systems may not truly represent the changes that occur in real catalysts (the so-called material gap effect). Supports can play an important role in the catalytic process by providing new active sites and may strongly affect both the physical and chemical properties of metal nanoparticles. We used near-ambient pressure x-ray photoelectron spectroscopy to show that the surface rearrangement of bimetallic (rhodium-palladium) nanoparticles under working conditions for ethanol steam reforming with real catalysts is strongly influenced by the presence of a reducible ceria support.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...