Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119468, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997074

RESUMO

Calcium is a major regulator of cellular metabolism. Calcium controls mitochondrial respiration, and calcium signaling is used to meet cellular energetic demands through energy production in the organelle. Although it has been widely assumed that Ca2+-actions require its uptake by mitochondrial calcium uniporter (MCU), alternative pathways modulated by cytosolic Ca2+ have been recently proposed. Recent findings have indicated a role for cytosolic Ca2+ signals acting on mitochondrial NADH shuttles in the control of cellular metabolism in neurons using glucose as fuel. It has been demonstrated that AGC1/Aralar, the component of the malate/aspartate shuttle (MAS) regulated by cytosolic Ca2+, participates in the maintenance of basal respiration exerted through Ca2+-fluxes between ER and mitochondria, whereas mitochondrial Ca2+-uptake by MCU does not contribute. Aralar/MAS pathway, activated by small cytosolic Ca2+ signals, provides in fact substrates, redox equivalents and pyruvate, fueling respiration. Upon activation and increases in workload, neurons upregulate OxPhos, cytosolic pyruvate production and glycolysis, together with glucose uptake, in a Ca2+-dependent way, and part of this upregulation is via Ca2+ signaling. Both MCU and Aralar/MAS contribute to OxPhos upregulation, Aralar/MAS playing a major role, especially at small and submaximal workloads. Ca2+ activation of Aralar/MAS, by increasing cytosolic NAD+/NADH provides Ca2+-dependent increases in glycolysis and cytosolic pyruvate production priming respiration as a feed-forward mechanism in response to workload. Thus, except for glucose uptake, these processes are dependent on Aralar/MAS, whereas MCU is the relevant target for Ca2+ signaling when MAS is bypassed, by using pyruvate or ß-hydroxybutyrate as substrates.


Assuntos
Ácido Aspártico , Cálcio , Cálcio/metabolismo , Ácido Aspártico/metabolismo , Malatos/metabolismo , NAD/metabolismo , Sinalização do Cálcio , Metabolismo Energético , Ácido Pirúvico/metabolismo , Neurônios/metabolismo , Glucose/metabolismo
2.
J Neurosci ; 42(19): 3879-3895, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35387872

RESUMO

Calcium is an important second messenger regulating a bioenergetic response to the workloads triggered by neuronal activation. In embryonic mouse cortical neurons using glucose as only fuel, activation by NMDA elicits a strong workload (ATP demand)-dependent on Na+ and Ca2+ entry, and stimulates glucose uptake, glycolysis, pyruvate and lactate production, and oxidative phosphorylation (OXPHOS) in a Ca2+-dependent way. We find that Ca2+ upregulation of glycolysis, pyruvate levels, and respiration, but not glucose uptake, all depend on Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier, component of the malate-aspartate shuttle (MAS). MAS activation increases glycolysis, pyruvate production, and respiration, a process inhibited in the presence of BAPTA-AM, suggesting that the Ca2+ binding motifs in Aralar may be involved in the activation. Mitochondrial calcium uniporter (MCU) silencing had no effect, indicating that none of these processes required MCU-dependent mitochondrial Ca2+ uptake. The neuronal respiratory response to carbachol was also dependent on Aralar, but not on MCU. We find that mouse cortical neurons are endowed with a constitutive ER-to-mitochondria Ca2+ flow maintaining basal cell bioenergetics in which ryanodine receptors, RyR2, rather than InsP3R, are responsible for Ca2+ release, and in which MCU does not participate. The results reveal that, in neurons using glucose, MCU does not participate in OXPHOS regulation under basal or stimulated conditions, while Aralar-MAS appears as the major Ca2+-dependent pathway tuning simultaneously glycolysis and OXPHOS to neuronal activation.SIGNIFICANCE STATEMENT Neuronal activation increases cell workload to restore ion gradients altered by activation. Ca2+ is involved in matching increased workload with ATP production, but the mechanisms are still unknown. We find that glycolysis, pyruvate production, and neuronal respiration are stimulated on neuronal activation in a Ca2+-dependent way, independently of effects of Ca2+ as workload inducer. Mitochondrial calcium uniporter (MCU) does not play a relevant role in Ca2+ stimulated pyruvate production and oxygen consumption as both are unchanged in MCU silenced neurons. However, Ca2+ stimulation is blunt in the absence of Aralar, a Ca2+-binding mitochondrial carrier component of Malate-Aspartate Shuttle (MAS). The results suggest that Ca2+-regulated Aralar-MAS activation upregulates glycolysis and pyruvate production, which fuels mitochondrial respiration, through regulation of cytosolic NAD+/NADH ratio.


Assuntos
Ácido Aspártico , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Ácido Aspártico/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Glicólise , Malatos/metabolismo , Camundongos , Neurônios/fisiologia , Piruvatos/metabolismo
3.
J Neurosci ; 40(48): 9293-9305, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33087477

RESUMO

Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier expressed in neurons, is the regulatory component of the NADH malate-aspartate shuttle. AGC1 deficiency is a neuropediatric rare disease characterized by hypomyelination, hypotonia, developmental arrest, and epilepsy. We have investigated whether ß-hydroxybutyrate (ßOHB), the main ketone body (KB) produced in ketogenic diet (KD), is neuroprotective in aralar-knock-out (KO) neurons and mice. We report that ßOHB efficiently recovers aralar-KO neurons from deficits in basal-stimulated and glutamate-stimulated respiration, effects requiring ßOHB entry into the neuron, and protects from glutamate excitotoxicity. Aralar-deficient mice were fed a KD to investigate its therapeutic potential early in development, but this approach was unfeasible. Therefore, aralar-KO pups were treated without distinction of gender with daily intraperitoneal injections of ßOHB during 5 d. This treatment resulted in a recovery of striatal markers of the dopaminergic system including dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio, and vesicular monoamine transporter 2 (VMAT2) protein. Regarding postnatal myelination, myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) myelin proteins were markedly increased in the cortices of ßOHB-treated aralar-KO mice. Although brain Asp and NAA levels did not change by ßOHB administration, a 4-d ßOHB treatment to aralar-KO, but not to control, neurons led to a substantial increase in Asp (3-fold) and NAA (4-fold) levels. These results suggest that the lack of increase in brain Asp and NAA is possibly because of its active utilization by the aralar-KO brain and the likely involvement of neuronal NAA in postnatal myelination in these mice. The effectiveness of ßOHB as a therapeutic treatment in AGC1 deficiency deserves further investigation.SIGNIFICANCE STATEMENTAralar deficiency induces a fatal phenotype in humans and mice and is associated with impaired neurodevelopment, epilepsy, and hypomyelination. In neurons, highly expressing aralar, its deficiency causes a metabolic blockade hampering mitochondrial energetics and respiration. Here, we find that ßOHB, the main metabolic product in KD, recovers defective mitochondrial respiration bypassing the metabolic failure in aralar-deficient neurons. ßOHB oxidation in mitochondria boosts the synthesis of cytosolic aspartate (Asp) and NAA, which is impeded by aralar deficiency, presumably through citrate-malate shuttle. In aralar-knock-out (KO) mice, ßOHB recovers from the drastic drop in specific dopaminergic and myelin markers. The ßOHB-induced myelin synthesis occurring together with the marked increment in neuronal NAA synthesis supports the role of NAA as a lipid precursor during postnatal myelination.


Assuntos
Ácido 3-Hidroxibutírico/fisiologia , Agrecanas/fisiologia , Encéfalo/fisiologia , Dieta Cetogênica , Vias Neurais/fisiologia , Neurônios/fisiologia , Ácido 3-Hidroxibutírico/administração & dosagem , Ácido 3-Hidroxibutírico/farmacologia , Agrecanas/genética , Aminoácidos/metabolismo , Animais , Dopamina/fisiologia , Feminino , Ácido Glutâmico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/genética , Bainha de Mielina/fisiologia , Glicoproteína Associada a Mielina/genética , Glicoproteína Associada a Mielina/fisiologia , Consumo de Oxigênio/fisiologia , Respiração/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Monoamina/fisiologia
4.
Neurochem Res ; 44(10): 2385-2391, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31016552

RESUMO

The brain uses mainly glucose as fuel with an index of glucose to oxygen utilization close to 6, the maximal index if all glucose was completely oxidized. However, this high oxidative index, contrasts with the metabolic traits of the major cell types in the brain studied in culture, neurons and astrocytes, including the selective use of the malate-aspartate shuttle (MAS) in neurons and the glycerol-phosphate shuttle in astrocytes. Metabolic interactions among these cell types may partly explain the high oxidative index of the brain. In vivo, neuronal activation results in a decrease in the oxygen glucose index, which has been attributed to a stimulation of glycolysis and lactate production in astrocytes in response to glutamate uptake (astrocyte-neuron lactate shuttle, ANLS). Recent findings indicate that this is accompanied with a stimulation of pyruvate formation and astrocyte respiration, indicating that lactate formation is not the only astrocytic response to neuronal activation. ANLS proposes that neurons utilize lactate produced by neighboring astrocytes. Indeed, neurons can use lactate to support an increase in respiration with different workloads, and this depends on the Ca2+ activation of MAS. However, whether this activation operates in the brain, particularly at high stimulation conditions, remains to be established.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Glicólise/fisiologia , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Glucose/metabolismo , Humanos
5.
Antioxid Redox Signal ; 27(2): 93-105, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-27554853

RESUMO

AIMS: A loss in brain acetylcholine and cholinergic markers, subchronic inflammation, and impaired mitochondrial function, which lead to low-energy production and high oxidative stress, are common pathological factors in several neurodegenerative diseases (NDDs). Glial cells are important for brain homeostasis, and microglia controls the central immune response, where α7 acetylcholine nicotinic receptors (nAChR) seem to play a pivotal role; however, little is known about the effects of this receptor in metabolism. Therefore, the aim of this study was to evaluate if glial mitochondrial energetics could be regulated through α7 nAChR. RESULTS: Primary glial cultures treated with the α7 nicotinic agonist PNU282987 increased their mitochondrial mass and their mitochondrial oxygen consumption without increasing oxidative stress; these changes were abolished when nuclear erythroid 2-related factor 2 (Nrf2) was absent, heme oxygenase-1 (HO-1) was inhibited, or peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) was silenced. More specifically, microglia of animals treated intraperitoneally with the α7 nAChR agonist PNU282987 (10 mg/kg) showed a significant increase in mitochondrial mass. Interestingly, LysMcre-Hmox1Δ/Δ and PGC-1α-/- animals showed lower microglial mitochondrial levels and treatment with PNU282987 did not produce effects on mitochondrial levels. INNOVATION: Increases in microglial mitochondrial mass and metabolism can be achieved via α7 nAChR by a mechanism that implicates Nrf2, HO-1, and PGC-1α. This signaling pathway could open a new strategy for the treatment of NDDs, such as Alzheimer's, characterized by a reduction of cholinergic markers. CONCLUSION: α7 nAChR signaling increases glial mitochondrial mass, both in vitro and in vivo, via HO-1 and PCG-1α. These effects could be of potential benefit in the context of NDDs. Antioxid. Redox Signal. 27, 93-105.


Assuntos
Benzamidas/administração & dosagem , Compostos Bicíclicos com Pontes/administração & dosagem , Heme Oxigenase-1/metabolismo , Mitocôndrias/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Células Cultivadas , Injeções Intraperitoneais , Camundongos , Mitocôndrias/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Biogênese de Organelas , Ratos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
6.
J Neurosci ; 36(16): 4443-56, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27098689

RESUMO

ARALAR/AGC1/Slc25a12, the aspartate-glutamate carrier from brain mitochondria, is the regulatory step in the malate-aspartate NADH shuttle, MAS. MAS is used to oxidize cytosolic NADH in mitochondria, a process required to maintain oxidative glucose utilization. The role of ARALAR was analyzed in two paradigms of glutamate-induced excitotoxicity in cortical neurons: glucose deprivation and acute glutamate stimulation. ARALAR deficiency did not aggravate glutamate-induced neuronal death in vitro, although glutamate-stimulated respiration was impaired. In contrast, the presence of L-lactate as an additional source protected against glutamate-induced neuronal death in control, but not ARALAR-deficient neurons.l-Lactate supplementation increased glutamate-stimulated respiration partially prevented the decrease in the cytosolic ATP/ADP ratio induced by glutamate and substantially diminished mitochondrial accumulation of 8-oxoguanosine, a marker of reactive oxygen species production, only in the presence, but not the absence, of ARALAR. In addition,l-lactate potentiated glutamate-induced increase in cytosolic Ca(2+), in a way independent of the presence of ARALAR. Interestingly,in vivo, the loss of half-a-dose of ARALAR in aralar(+/-)mice enhanced kainic acid-induced seizures and neuronal damage with respect to control animals, in a model of excitotoxicity in which increased L-lactate levels and L-lactate consumption have been previously proven. These results suggest that,in vivo, an inefficient operation of the shuttle in the aralar hemizygous mice prevents the protective role of L-lactate on glutamate excitotoxiciy and that the entry and oxidation of L-lactate through ARALAR-MAS pathway is required for its neuroprotective function. SIGNIFICANCE STATEMENT: Lactate now stands as a metabolite necessary for multiple functions in the brain and is an alternative energy source during excitotoxic brain injury. Here we find that the absence of a functional malate-aspartate NADH shuttle caused by aralar/AGC1 disruption causes a block in lactate utilization by neurons, which prevents the protective role of lactate on excitotoxicity, but not glutamate excitotoxicity itself. Thus, failure to use lactate is detrimental and is possibly responsible for the exacerbated in vivo excitotoxicity in aralar(+/-)mice.


Assuntos
Agrecanas/deficiência , Ácido Glutâmico/toxicidade , Ácido Láctico/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Neuroproteção/efeitos dos fármacos , Animais , Células Cultivadas , Ácido Láctico/farmacologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroproteção/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...