Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 402, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619054

RESUMO

CRISPR-Cas9 screening libraries have arisen as a powerful tool to identify protein-coding (pc) and non-coding genes playing a role along different processes. In particular, the usage of a nuclease active Cas9 coupled to a single gRNA has proven to efficiently impair the expression of pc-genes by generating deleterious frameshifts. Here, we first demonstrate that targeting the same gene simultaneously with two guide RNAs (paired guide RNAs, pgRNAs) synergistically enhances the capacity of the CRISPR-Cas9 system to knock out pc-genes. We next design a library to target, in parallel, pc-genes and lncRNAs known to change expression during the transdifferentiation from pre-B cells to macrophages. We show that this system is able to identify known players in this process, and also predicts 26 potential novel ones, of which we select four (two pc-genes and two lncRNAs) for deeper characterization. Our results suggest that in the case of the candidate lncRNAs, their impact in transdifferentiation may be actually mediated by enhancer regions at the targeted loci, rather than by the lncRNA transcripts themselves. The CRISPR-Cas9 coupled to a pgRNAs system is, therefore, a suitable tool to simultaneously target pc-genes and lncRNAs for genomic perturbation assays.


Assuntos
RNA Guia de Cinetoplastídeos , RNA Longo não Codificante , Sistemas CRISPR-Cas , Transdiferenciação Celular , Humanos , Macrófagos , RNA Guia de Cinetoplastídeos/genética , RNA Longo não Codificante/genética
2.
Genome Res ; 31(8): 1325-1336, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290042

RESUMO

Tissue function and homeostasis reflect the gene expression signature by which the combination of ubiquitous and tissue-specific genes contribute to the tissue maintenance and stimuli-responsive function. Enhancers are central to control this tissue-specific gene expression pattern. Here, we explore the correlation between the genomic location of enhancers and their role in tissue-specific gene expression. We find that enhancers showing tissue-specific activity are highly enriched in intronic regions and regulate the expression of genes involved in tissue-specific functions, whereas housekeeping genes are more often controlled by intergenic enhancers, common to many tissues. Notably, an intergenic-to-intronic active enhancers continuum is observed in the transition from developmental to adult stages: the most differentiated tissues present higher rates of intronic enhancers, whereas the lowest rates are observed in embryonic stem cells. Altogether, our results suggest that the genomic location of active enhancers is key for the tissue-specific control of gene expression.


Assuntos
Células-Tronco Embrionárias , Elementos Facilitadores Genéticos , Células-Tronco Embrionárias/metabolismo , Genes Essenciais , Íntrons/genética
3.
PLoS Genet ; 16(12): e1009245, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370262

RESUMO

Natural Antisense Transcripts (NATs) are long non-coding RNAs (lncRNAs) that overlap coding genes in the opposite strand. NATs roles have been related to gene regulation through different mechanisms, including post-transcriptional RNA processing. With the aim to identify NATs with potential regulatory function during fly development, we generated RNA-Seq data in Drosophila developing tissues and found bsAS, one of the most highly expressed lncRNAs in the fly wing. bsAS is antisense to bs/DSRF, a gene involved in wing development and neural processes. bsAS plays a crucial role in the tissue specific regulation of the expression of the bs/DSRF isoforms. This regulation is essential for the correct determination of cell fate during Drosophila development, as bsAS knockouts show highly aberrant phenotypes. Regulation of bs isoform usage by bsAS is mediated by specific physical interactions between the promoters of these two genes, which suggests a regulatory mechanism involving the collision of RNA polymerases transcribing in opposite directions. Evolutionary analysis suggests that bsAS NAT emerged simultaneously to the long-short isoform structure of bs, preceding the emergence of wings in insects.


Assuntos
Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Longo não Codificante/genética , Fator de Resposta Sérica/genética , Asas de Animais/crescimento & desenvolvimento , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Resposta Sérica/metabolismo , Asas de Animais/metabolismo
4.
F1000Res ; 9: 1336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34745570

RESUMO

The COVID-19 pandemic has posed and is continuously posing enormous societal and health challenges worldwide. The research community has mobilized to develop novel projects to find a cure or a vaccine, as well as to contribute to mass testing, which has been a critical measure to contain the infection in several countries. Through this article, we share our experiences and learnings as a group of volunteers at the Centre for Genomic Regulation (CRG) in Barcelona, Spain. As members of the ORFEU project, an initiative by the Government of Catalonia to achieve mass testing of people at risk and contain the epidemic in Spain, we share our motivations, challenges and the key lessons learnt, which we feel will help better prepare the global society to address similar situations in the future.


Assuntos
COVID-19 , Teste para COVID-19 , Genômica , Humanos , Pandemias , SARS-CoV-2 , Voluntários
5.
Nat Genet ; 49(12): 1731-1740, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29106417

RESUMO

Accurate annotation of genes and their transcripts is a foundation of genomics, but currently no annotation technique combines throughput and accuracy. As a result, reference gene collections remain incomplete-many gene models are fragmentary, and thousands more remain uncataloged, particularly for long noncoding RNAs (lncRNAs). To accelerate lncRNA annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS), which combines targeted RNA capture with third-generation long-read sequencing. Here we present an experimental reannotation of the GENCODE intergenic lncRNA populations in matched human and mouse tissues that resulted in novel transcript models for 3,574 and 561 gene loci, respectively. CLS approximately doubled the annotated complexity of targeted loci, outperforming existing short-read techniques. Full-length transcript models produced by CLS enabled us to definitively characterize the genomic features of lncRNAs, including promoter and gene structure, and protein-coding potential. Thus, CLS removes a long-standing bottleneck in transcriptome annotation and generates manual-quality full-length transcript models at high-throughput scales.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , RNA Longo não Codificante/genética , Animais , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Camundongos , Fases de Leitura Aberta/genética , Reprodutibilidade dos Testes
7.
Nat Genet ; 47(10): 1158-1167, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26280901

RESUMO

The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Processamento Alternativo , Animais , Imunoprecipitação da Cromatina , Histonas/metabolismo , Humanos , Reação em Cadeia da Polimerase , Processamento Pós-Transcricional do RNA , Transcrição Gênica
8.
Nucleic Acids Res ; 40(19): 9493-505, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904080

RESUMO

H3K4me3 is a histone modification that accumulates at the transcription-start site (TSS) of active genes and is known to be important for transcription activation. The way in which H3K4me3 is regulated at TSS and the actual molecular basis of its contribution to transcription remain largely unanswered. To address these questions, we have analyzed the contribution of dKDM5/LID, the main H3K4me3 demethylase in Drosophila, to the regulation of the pattern of H3K4me3. ChIP-seq results show that, at developmental genes, dKDM5/LID localizes at TSS and regulates H3K4me3. dKDM5/LID target genes are highly transcribed and enriched in active RNApol II and H3K36me3, suggesting a positive contribution to transcription. Expression-profiling show that, though weakly, dKDM5/LID target genes are significantly downregulated upon dKDM5/LID depletion. Furthermore, dKDM5/LID depletion results in decreased RNApol II occupancy, particularly by the promoter-proximal Pol llo(ser5) form. Our results also show that ASH2, an evolutionarily conserved factor that locates at TSS and is required for H3K4me3, binds and positively regulates dKDM5/LID target genes. However, dKDM5/LID and ASH2 do not bind simultaneously and recognize different chromatin states, enriched in H3K4me3 and not, respectively. These results indicate that, at developmental genes, dKDM5/LID and ASH2 coordinately regulate H3K4me3 at TSS and that this dynamic regulation contributes to transcription.


Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Animais , Linhagem Celular , Drosophila/enzimologia , Drosophila/genética , Drosophila/metabolismo , Histona Desmetilases , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
9.
Nucleic Acids Res ; 39(11): 4628-39, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21310711

RESUMO

An important mechanism for gene regulation involves chromatin changes via histone modification. One such modification is histone H3 lysine 4 trimethylation (H3K4me3), which requires histone methyltranferase complexes (HMT) containing the trithorax-group (trxG) protein ASH2. Mutations in ash2 cause a variety of pattern formation defects in the Drosophila wing. We have identified genome-wide binding of ASH2 in wing imaginal discs using chromatin immunoprecipitation combined with sequencing (ChIP-Seq). Our results show that genes with functions in development and transcriptional regulation are activated by ASH2 via H3K4 trimethylation in nearby nucleosomes. We have characterized the occupancy of phosphorylated forms of RNA Polymerase II and histone marks associated with activation and repression of transcription. ASH2 occupancy correlates with phosphorylated forms of RNA Polymerase II and histone activating marks in expressed genes. Additionally, RNA Polymerase II phosphorylation on serine 5 and H3K4me3 are reduced in ash2 mutants in comparison to wild-type flies. Finally, we have identified specific motifs associated with ASH2 binding in genes that are differentially expressed in ash2 mutants. Our data suggest that recruitment of the ASH2-containing HMT complexes is context specific and points to a function of ASH2 and H3K4me3 in transcriptional pausing control.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila/genética , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Ativação Transcricional , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genoma de Inseto , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Metilação , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Nucleic Acids Res ; 36(21): 6926-33, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18978017

RESUMO

The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas de Homeodomínio/genética , Elementos de Resposta , Animais , Desoxirribonuclease I/metabolismo , Drosophila/embriologia , Drosophila/metabolismo , Genoma de Inseto , Complexo Repressor Polycomb 1
11.
Genome Biol ; 9(9): R134, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18783608

RESUMO

BACKGROUND: The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure. RESULTS: We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae. CONCLUSION: The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Família Multigênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...