Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(18): 182701, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594108

RESUMO

The ^{30}P(p,γ)^{31}S reaction plays an important role in understanding the nucleosynthesis of A≥30 nuclides in oxygen-neon novae. The Gaseous Detector with Germanium Tagging was used to measure ^{31}Cl ß-delayed proton decay through the key J^{π}=3/2^{+}, 260-keV resonance. The intensity I_{ßp}^{260}=8.3_{-0.9}^{+1.2}×10^{-6} represents the weakest ß-delayed, charged-particle emission ever measured below 400 keV, resulting in a proton branching ratio of Γ_{p}/Γ=2.5_{-0.3}^{+0.4}×10^{-4}. By combining this measurement with shell-model calculations for Γ_{γ} and past work on other resonances, the total ^{30}P(p,γ)^{31}S rate has been determined with reduced uncertainty. The new rate has been used in hydrodynamic simulations to model the composition of nova ejecta, leading to a concrete prediction of ^{30}Si:^{28}Si excesses in presolar nova grains and the calibration of nuclear thermometers.

2.
Phys Rev Lett ; 116(10): 102502, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015475

RESUMO

The thermonuclear ^{30}P(p,γ)^{31}S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key ^{31}S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the ß decay of ^{31}Cl, we have observed the ß-delayed γ decay of a ^{31}S state at E_{x}=6390.2(7) keV, with a ^{30}P(p,γ)^{31}S resonance energy of E_{r}=259.3(8) keV, in the middle of the ^{30}P(p,γ)^{31}S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at E_{x}=6279.0(6) keV, giving it an unambiguous spin and parity of 3/2^{+} and making it an important l=0 resonance for proton capture on ^{30}P.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA