Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 159: 213813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428122

RESUMO

The ability of human tissues to self-repair is limited, which motivates the scientific community to explore new and better therapeutic approaches to tissue regeneration. The present manuscript provides a comparative study between a marine-based composite biomaterial, and another composed of well-established counterparts for bone tissue regeneration. Blue shark skin collagen was combined with bioapatite obtained from blue shark's teeth (mColl:BAp), while bovine collagen was combined with synthetic hydroxyapatite (bColl:Ap) to produce 3D composite scaffolds by freeze-drying. Collagens showed similar profiles, while apatite particles differed in their composition, being the marine bioapatite a fluoride-enriched ceramic. The marine-sourced biomaterials presented higher porosities, improved mechanical properties, and slower degradation rates when compared to synthetic apatite-reinforced bovine collagen. The in vivo performance regarding bone tissue regeneration was evaluated in defects created in femoral condyles in New Zealand rabbits twelve weeks post-surgery. Micro-CT results showed that mColl:BAp implanted condyles had a slower degradation and an higher tissue formation (17.9 ± 6.9 %) when compared with bColl:Ap implanted ones (12.9 ± 7.6 %). The histomorphometry analysis provided supporting evidence, confirming the observed trend by quantifying 13.1 ± 7.9 % of new tissue formation for mColl:BAp composites and 10.4 ± 3.2 % for bColl:Ap composites, suggesting the potential use of marine biomaterials for bone regeneration.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Humanos , Animais , Coelhos , Bovinos , Materiais Biocompatíveis/uso terapêutico , Apatitas , Regeneração Óssea , Colágeno/farmacologia
2.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895060

RESUMO

Hydrolyzed collagen, glycogen, and hyaluronic acid, obtained through the biotechnological valorization of underutilized marine bioresources, fulfill cosmetic industry requirements for sustainable products produced under circular economy principles. Hydrolyzed collagen was obtained by hydrolyzing blue shark collagen with papain and ultrafiltration. Glycogen was isolated from industrial mussel cooking wastewaters through ultrafiltration, precipitation, and selective polysaccharide separation. Hyaluronic acid was produced by fermentation, purification, and depolymerization. The main objective was to test the feasibility of including these three biomolecules in a cosmetic formulation as bioactive compounds. For this, the in vitro irritant potential of the three ingredients and also that of the cosmetic formulation was assayed according to the Reconstituted Human Epithelium Test method OECD 439. Moreover, an in vitro assessment of the effect of hydrolyzed collagen and hyaluronic acid combinations on mRNA expression and collagen type I synthesis was evaluated in adult human fibroblasts. This study establishes, for the first time, the potential use of particular hydrolyzed collagen and hyaluronic acid combinations as stimulators of collagen I synthesis in fibroblast cultures. Besides, it provide safety information regarding potential use of those biomolecules in the formulation of a cosmetic preparation positively concluding that both, ingredients and cosmetic preparation, resulted not irritant for skin following an international validated reference method.


Assuntos
Cosméticos , Ácido Hialurônico , Humanos , Ácido Hialurônico/farmacologia , Qualidade de Produtos para o Consumidor , Pele/metabolismo , Cosméticos/farmacologia , Colágeno/farmacologia , Colágeno/metabolismo , Colágeno Tipo I , Glicogênio
3.
Protein Expr Purif ; 212: 106356, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37604271

RESUMO

Decades of extensive efforts on marine collagen extraction and characterization allowed to recognize the unique and excellent characteristics of marine collagen offering advantages over that obtained from terrestrial sources. However, not all marine collagens have the same biochemical characteristics; understanding those at molecular and supramolecular level, is crucial for optimal design of applications. One relevant aspect of collagen characterization is the analysis of its different subunits (α-chains) and their intermolecular cross-links (ß- and γ-components), which ultimately determine the specific functions of a particular collagen. Collagens from a teleost and an elasmobranch species were analyzed to understand the influence of their subunit composition and intermolecular crosslinking pattern on their different physicochemical behaviour. For comparative purposes a commercial mammal collagen was included in the study. Although electrophoretic profiles showed the typical composition of type I collagen for hake, blue shark and calf collagen, molar ratios of their α-chains were different indicating a different degree of dimerization of their α2-chains with implications in the presence of a different crosslinking degree pattern. Electrophoresis, amino acid composition, hydrophobicity (RP-HPLC) and molecular weight analysis (GPC-HPLC) results, besides a peptide mapping and an antioxidant activity study of the resultant peptides, would help to understand the role of different subunit collagen composition and different crosslinking pattern in the conformation of a differential quaternary supramolecular structure within different species and its biofunctional implications. The experiments developed would allow to progress in the valorization potential of fish discards and byproducts to explore commercial uses of collagens from marine origin.


Assuntos
Colágeno , Gadiformes , Animais , Aminoácidos , Cromatografia Líquida de Alta Pressão , Dimerização , Mamíferos
4.
Biomed Mater ; 18(5)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531962

RESUMO

In the past decade, there has been significant progress in 3D printing research for tissue engineering (TE) using biomaterial inks made from natural and synthetic compounds. These constructs can aid in the regeneration process after tissue loss or injury, but achieving high shape fidelity is a challenge as it affects the construct's physical and biological performance with cells. In parallel with the growth of 3D bioprinting approaches, some marine-origin polymers have been studied due to their biocompatibility, biodegradability, low immunogenicity, and similarities to human extracellular matrix components, making them an excellent alternative to land mammal-origin polymers with reduced disease transmission risk and ethical concerns. In this research, collagen from shark skin, chitosan from squid pens, and fucoidan from brown algae were effectively blended for the manufacturing of an adequate biomaterial ink to achieve a printable, reproducible material with a high shape fidelity and reticulated using four different approaches (phosphate-buffered saline, cell culture medium, 6% CaCl2, and 5 mM Genipin). Materials characterization was composed by filament collapse, fusion behavior, swelling behavior, and rheological and compressive tests, which demonstrated favorable shape fidelity resulting in a stable structure without deformations, and interesting shear recovery properties around the 80% mark. Additionally, live/dead assays were conducted in order to assess the cell viability of an immortalized human mesenchymal stem cell line, seeded directly on the 3D printed constructs, which showed over 90% viable cells. Overall, the Roswell Park Memorial Institute cell culture medium promoted the adequate crosslinking of this biopolymer blend to serve the TE approach, taking advantage of its capacity to hamper pH decrease coming from the acidic biomaterial ink. While the crosslinking occurs, the pH can be easily monitored by the presence of the indicator phenol red in the cell culture medium, which reduces costs and time.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Animais , Humanos , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Tinta , Polímeros , Engenharia Tecidual/métodos , Impressão Tridimensional , Bioimpressão/métodos , Mamíferos
5.
Gels ; 9(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36975696

RESUMO

The self-repair capacity of human tissue is limited, motivating the arising of tissue engineering (TE) in building temporary scaffolds that envisage the regeneration of human tissues, including articular cartilage. However, despite the large number of preclinical data available, current therapies are not yet capable of fully restoring the entire healthy structure and function on this tissue when significantly damaged. For this reason, new biomaterial approaches are needed, and the present work proposes the development and characterization of innovative polymeric membranes formed by blending marine origin polymers, in a chemical free cross-linking approach, as biomaterials for tissue regeneration. The results confirmed the production of polyelectrolyte complexes molded as membranes, with structural stability resulting from natural intermolecular interactions between the marine biopolymers collagen, chitosan and fucoidan. Furthermore, the polymeric membranes presented adequate swelling ability without compromising cohesiveness (between 300 and 600%), appropriate surface properties, revealing mechanical properties similar to native articular cartilage. From the different formulations studied, the ones performing better were the ones produced with 3 % shark collagen, 3% chitosan and 10% fucoidan, as well as with 5% jellyfish collagen, 3% shark collagen, 3% chitosan and 10% fucoidan. Overall, the novel marine polymeric membranes demonstrated to have promising chemical, and physical properties for tissue engineering approaches, namely as thin biomaterial that can be applied over the damaged articular cartilage aiming its regeneration.

6.
Bioengineering (Basel) ; 10(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36671634

RESUMO

Corneal pathologies from infectious or noninfectious origin have a significant impact on the daily lives of millions of people worldwide. Despite the risk of organ rejection or infection, corneal transplantation is currently the only effective treatment. Finding safe and innovative strategies is the main goal of tissue-engineering-based approaches. In this study, the potential of gelatin methacryloyl (GelMA) hydrogels produced from marine-derived gelatin and loaded with ascorbic acid (as an enhancer of the biological activity of cells) was evaluated for corneal stromal applications. Marine GelMA was synthesized with a methacrylation degree of 75%, enabling effective photocrosslinking, and hydrogels with or without ascorbic acid were produced, encompassing human keratocytes. All the produced formulations exhibited excellent optical and swelling properties with easy handling as well as structural stability and adequate degradation rates that may allow proper extracellular matrix remodeling by corneal stromal cells. Formulations loaded with 0.5 mg/mL of ascorbic acid enhanced the biological performance of keratocytes and induced collagen production. These results suggest that, in addition to marine-derived gelatin being suitable for the synthesis of GelMA, the hydrogels produced are promising biomaterials for corneal regeneration applications.

7.
Biomater Adv ; 137: 212843, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929272

RESUMO

In the recent decade, marine origin products have been growingly studied as building blocks complying with the constant demand of the biomedical sector regarding the development of new devices for Tissue Engineering and Regenerative Medicine (TERM). In this work, several combinations of marine collagen-chitosan-fucoidan hydrogel were formed using a newly developed eco-friendly compressive and absorption methodology to produce hydrogels (CAMPH), which consists of compacting the biopolymers solution while removing the excess of water. The hydrogel formulations were prepared by blending solutions of 5% collagen from jellyfish and/or 3% collagen from blue shark skin, with solutions of 3% chitosan from squid pens and solutions of 10% fucoidan from brown algae, at different ratios. The biopolymer physico-chemical characterization comprised Amino Acid analysis, ATR-FTIR, CD, SDS-PAGE, ICP, XRD, and the results suggested the shark/jellyfish collagen(s) conserved the triple helical structure and had similarities with type I and type II collagen, respectively. The studied collagens also contain a denaturation temperature of around 30-32 °C and a molecular weight between 120 and 125 kDa. Additionally, the hydrogel properties were determined by rheology, water uptake ability, degradation rate, and SEM, and the results showed that all formulations had interesting mechanical (strong viscoelastic character) and structural stability properties, with a significant positive highlight in the formulation of H3 (blending all biopolymers, i.e., 5% collagen from jellyfish, 3% collagen from skin shark, 3% chitosan and 10% of fucoidan) in the degradation test, that shows a mass loss around 18% over the 30 days, while the H1 and H2, present a mass loss of around 35% and 44%, respectively. Additionally, the in vitro cellular assessments using chondrocyte cells (ATDC5) in encapsulated state revealed, for all hydrogel formulations, a non-cytotoxic behavior. Furthermore, Live/Dead assay and Phalloidin/DAPI staining, to assess the cytoskeletal organization, proved that the hydrogels can provide a suitable microenvironment for cell adhesion, viability, and proliferation, after being encapsulated. Overall, the results show that all marine collagen (jellyfish/shark)-chitosan-fucoidan hydrogel formulations provide a good structural architecture and microenvironment, highlighting the H3 biomaterial due to containing more polymers in their composition, making it suitable for biomedical articular cartilage therapies.


Assuntos
Cartilagem Articular , Quitosana , Materiais Biocompatíveis/farmacologia , Cartilagem Articular/química , Quitosana/química , Colágeno/farmacologia , Hidrogéis/farmacologia , Engenharia Tecidual/métodos , Água/metabolismo
8.
Biomater Adv ; 133: 112600, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35525763

RESUMO

Bioprinting - printing with incorporated living cells - has earned special attention on tissue engineering approaches, aiming to closer reproduce the 3D microenvironment of the target tissue. However, it raises extra complexity related to the need to use cell-friendly printing conditions that still comply with material printing fidelity. Inspired by the composite nano structural organization of mineralized tissues, this work reports the efficiency of the chemical approach followed to in situ mineralize blue shark skin collagen, at a nano scale level, to ultimately produce stable inks. The influence of initial cellular density was evaluated by assessing three different concentrations (2.5, 5 and 7.5 × 106 cells·ml-1) of human adipose stem cells (hASC), with the higher density of encapsulated cells presenting improved viability in a long culture term. Immunodetection of osteogenic-related markers, like RUNX2 and osteopontin, 21 days after cell culture in basal conditions confirmed the potential of the ink to be applied for osteogenic purposes, which may be associated with the success of the cell-to-ink interaction and the Ca2+ ions released from the co-precipitated hydroxyapatite. A combination of mineralized shark collagen, alginate and hASC is thus proposed as a bioactive bioink with potential properties for regeneration of bone tissue.


Assuntos
Bioimpressão , Colágeno , Tinta , Células-Tronco , Tecido Adiposo/citologia , Regeneração Óssea , Colágeno/química , Humanos , Células-Tronco/citologia
9.
Polymers (Basel) ; 13(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451367

RESUMO

Salmon processing commonly involves the skinning of fish, generating by-products that need to be handled. Such skin residues may represent valuable raw materials from a valorization perspective, mainly due to their collagen content. With this approach, we propose in the present work the extraction of gelatin from farmed salmon and further valorization of the remaining residue through hydrolysis. Use of different chemical treatments prior to thermal extraction of gelatin results in a consistent yield of around 5%, but considerable differences in rheological properties. As expected from a cold-water species, salmon gelatin produces rather weak gels, ranging from 0 to 98 g Bloom. Nevertheless, the best performing gelatins show considerable structural integrity, assessed by gel permeation chromatography with light scattering detection for the first time on salmon gelatin. Finally, proteolysis of skin residues with Alcalase for 4 h maximizes digestibility and antihypertensive activity of the resulting hydrolysates, accompanied by the sharpest reduction in molecular weight and higher content of essential amino acids. These results indicate the possibility of tuning salmon gelatin properties through changes in chemical treatment conditions, and completing the valorization cycle through production of bioactive and nutritious hydrolysates.

10.
Mater Sci Eng C Mater Biol Appl ; 120: 111587, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545809

RESUMO

Representing a strategy of marine by-products valorization, based on isolation of biocompounds and assessment of biomedical applicability, the potential of blue shark (Prionace glauca (PG)) skin collagen to induce chondrogenic differentiation of human adipose stem cells (hASC) was investigated, with and without exogenous stimulation. For that, a cryogelation method was applied to produce highly interconnected porous 3-dimensional (3D) constructs made of collagen and collagen:hyaluronic acid (20:1). In vitro studies reveal that hASC adhere abundantly to the constructs which then suggests the early chondrogenic differentiation of those cells. These findings are supported by the mRNA expression encoding chondrogenic-related markers like Coll II and Sox-9 that are markedly upregulated at an early stage for both conditions, with and without exogenous stimulation. The introduction of hyaluronic acid (Hya) seems to play a crucial role at later time points, as shown by the evident immunodetection of aggrecan (ACAN), even without exogenous stimulation. It is hypothesized that the PG collagen itself can support chondrogenic differentiation at early time points, but exogenous stimulation is required to ensure phenotype maintenance. The present work highlights the relevance of using blue shark collagen biopolymer as a building block to produce highly effective temporary matrices for cartilage applications.


Assuntos
Cartilagem , Tubarões , Animais , Diferenciação Celular , Células Cultivadas , Condrócitos , Condrogênese , Colágeno , Humanos , Regeneração
11.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008452

RESUMO

High molecular weight (Mw) collagen hydrolysates have been demonstrated to produce a higher synthesis of collagen type I mRNA. Mw determination is a key factor maximizing the effect of collagen hydrolysates on collagen type I synthesis by fibroblasts. This work aimed to achieve a high average Mw in Blue Shark Collagen Hydrolysate, studying different hydrolysis parameters by GPC-LS analysis and testing its effect on mRNA Type I collagen expression. Analysis revealed differences in blue shark collagen hydrolysates Mw depending on hydrolysis conditions. Papain leads to obtaining a significantly higher Mw hydrolysate than Alcalase at different times of hydrolysis and at different enzyme/substrate ratios. Besides, the time of the hydrolysis factor is more determinant than the enzyme/substrate ratio factor for obtaining a higher or lower hydrolysate Mw when using Papain as the enzyme. Contrary, Alcalase hydrolysates resulted in similar Mw with no significant differences between different conditions of hydrolysis assayed. Blue shark collagen hydrolysate showing the highest Mw showed neither cytotoxic nor proliferation effect on fibroblast cell culture. Besides, it exhibited an increasing effect on both mRNA expression and pro-collagen I production.


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , RNA Mensageiro/metabolismo , Tubarões/metabolismo , Animais , Difusão Dinâmica da Luz/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Hidrólise , Peso Molecular , Papaína/metabolismo , Subtilisinas/metabolismo
12.
Polymers (Basel) ; 12(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756429

RESUMO

Acid-soluble collagens from European hake and Blue shark skin were isolated, characterized, and compared. As the structure of collagen determines its function, the final objective of this study was to investigate biochemical differences between both collagens to identify future potential applications. Chromatographic behavior revealed differences in collagen from both species. Increases of temperature and stirring time produced no effect on European hake collagen solubility in the mobile phase, resulting in the same chromatographic profiles. Conversely, the application of temperature and stirring-time increments showed a positive effect on Blue shark collagen solubility, resulting in different chromatographic profiles and observing higher molecular weight components when sample is incubated at 50 °C (15 min) after 48 h stirring. To test if the different chromatographic behavior exhibited by both collagens could be influenced by differences in subunit composition (alpha-chains), cation exchange chromatography was employed to separate collagen subunits. The electrophoretic patterns and gel permeation chromatography with light-scattering detection (GPC-LS) results of the obtained cation exchange peak fractions revealed differences regarding subunit composition between both species, influencing the crosslinking pattern. This is the first comparative study using GPC-LS to provide information of European hake and Blue shark collagen subunit composition.

13.
Biomolecules ; 10(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075329

RESUMO

The valorization of wastes generated in the processing of farmed fish is currently an issue of extreme relevance for the industry, aiming to accomplish the objectives of circular bioeconomy. In the present report, turbot (Scophthalmus maximus) by-products were subjected to Alcalase hydrolysis under the optimal conditions initially defined by response surface methodology. All the fish protein hydrolysates (FPHs) showed a high yield of digestion (>83%), very remarkable degrees of hydrolysis (30-37%), high content of soluble protein (>62 g/L), an excellent profile of amino acids, and almost total in vitro digestibility (higher than 92%). Antioxidant and antihypertensive activities were analyzed in all cases, viscera hydrolysates being the most active. The range of average molecular weights (Mw) of turbot hydrolysates varied from 1200 to 1669 Da, and peptide size distribution showed that the hydrolysate of viscera had the highest content of peptides above 1000 Da and below 200 Da.


Assuntos
Aquicultura/métodos , Linguados/metabolismo , Subtilisinas/metabolismo , Aminoácidos , Animais , Antioxidantes/química , Proteínas de Peixes/química , Hidrólise , Peptídeos , Hidrolisados de Proteína/química , Subtilisinas/química
14.
ACS Biomater Sci Eng ; 6(6): 3664-3672, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33463184

RESUMO

Mineralization processes based on coprecipitation methods have been applied as a promising alternative to the most commonly used methods of polymer-ceramic combination, direct mixing, and incubation in simulated body fluid (SBF) or modified SBF. In the present study, for the first time, the in situ mineralization (ideally hydroxyapatite formation) of blue shark (Prionace glauca (PG)) collagen to fabricate 3D printable cell-laden hydrogels is proposed. In the first part, several parameters for collagen mineralization were tested until optimization. The hydroxyapatite formation was confirmed by FT-IR, XRD, and TEM techniques. In the second part, stable bioinks combining the biomimetically mineralized collagen with alginate (AG) (1:1, 1:2, 1:3, and AG) solution were used for 3D printing of hydrogels. The addition of Ca2+ ions into the system did present a synergistic effect: by one side, the in situ mineralization of the collagen occurred, and at same time, they were also useful to ionically cross-link the blends with alginate, avoiding the addition of any cytotoxic chemical cross-linking agent. Mouse fibroblast cell line survival during and after printing was favored by the presence of PG collagen as exhibited by the biological performance of the hydrogels. Inspired in a concept of marine byproduct valorization, 3D bioprinting of in situ mineralized blue shark collagen is thus proposed as a promising approach, envisioning the engineering of mineralized tissues.


Assuntos
Hidrogéis , Tubarões , Animais , Colágeno , Camundongos , Impressão Tridimensional , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual
15.
Mar Drugs ; 17(12)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801228

RESUMO

In the present manuscript, various by-products (heads, trimmings, and frames) generated from salmonids (rainbow trout and salmon) processing were evaluated as substrates for the production of fish protein hydrolysates (FPHs), potentially adequate as protein ingredients of aquaculture feeds. Initially, enzymatic conditions of hydrolysis were optimized using second order rotatable designs and multivariable statistical analysis. The optimal conditions for the Alcalase hydrolysis of heads were 0.1% (v/w) of enzyme concentration, pH 8.27, 56.2°C, ratio (Solid:Liquid = 1:1), 3 h of hydrolysis, and agitation of 200 rpm for rainbow trout and 0.2% (v/w) of enzyme, pH 8.98, 64.2 °C, 200 rpm, 3 h of hydrolysis, and S:L = 1:1 for salmon. These conditions obtained at 100 mL-reactor scale were then validated at 5L-reactor scale. The hydrolytic capacity of Alcalase and the protein quality of FPHs were excellent in terms of digestion of wastes (Vdig > 84%), high degrees of hydrolysis (Hm > 30%), high concentration of soluble protein (Prs > 48 g/L), good balance of amino acids, and almost full in vitro digestibility (Dig > 93%). Fish oils were recovered from wastes jointly with FPHs and bioactive properties of hydrolysates (antioxidant and antihypertensive) were also determined. The salmon FPHs from trimmings + frames (TF) showed the higher protein content in comparison to the rest of FPHs from salmonids. Average molecular weights of salmonid-FPHs ranged from 1.4 to 2.0 kDa and the peptide sizes distribution indicated that hydrolysates of rainbow trout heads and salmon TF led to the highest percentages of small peptides (0-500 Da).


Assuntos
Produtos Pesqueiros/análise , Oncorhynchus mykiss , Hidrolisados de Proteína/química , Salmão , Animais , Anti-Hipertensivos/isolamento & purificação , Anti-Hipertensivos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Aquicultura , Óleos de Peixe/isolamento & purificação , Hidrólise , Subtilisinas/química
16.
Mar Drugs ; 17(3)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818811

RESUMO

The objective of this report was to investigate the isolation and recovery of different biocompounds and bioproducts from wastes (skins and heads) that were obtained from five species discarded by fishing fleets (megrim, hake, boarfish, grenadier, and Atlantic horse mackerel). Based on chemical treatments, enzymatic hydrolysis, and bacterial fermentation, we have isolated and produced gelatinous solutions, oils that are rich in omega-3, fish protein hydrolysates (FPHs) with antioxidant and antihypertensive activities, and peptones. FPHs showed degrees of hydrolysis higher than 13%, with soluble protein concentrations greater than 27 g/L and in vitro digestibilities superior to 90%. Additionally, amino acids compositions were always valuable and bioactivities were, in some cases, remarkable. Peptones that were obtained from FPHs of skin and the heads were demonstrated to be a viable alternative to expensive commercial ones indicated for the production of biomass, lactic acid, and pediocin SA-1 from Pediococcus acidilactici.


Assuntos
Produtos Biológicos/isolamento & purificação , Ácidos Graxos Ômega-3/isolamento & purificação , Peixes , Peptonas/isolamento & purificação , Hidrolisados de Proteína/isolamento & purificação , Animais , Anti-Hipertensivos/economia , Anti-Hipertensivos/isolamento & purificação , Anti-Hipertensivos/farmacologia , Antioxidantes/economia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Bactérias/metabolismo , Produtos Biológicos/economia , Produtos Biológicos/farmacologia , Ácidos Graxos Ômega-3/economia , Ácidos Graxos Ômega-3/farmacologia , Fermentação , Pesqueiros/economia , Cabeça , Hidrólise , Peptonas/economia , Peptonas/farmacologia , Hidrolisados de Proteína/economia , Hidrolisados de Proteína/farmacologia , Pele/química , Espanha
17.
Carbohydr Polym ; 210: 302-313, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30732766

RESUMO

Chondroitin sulfate (CS) is a glycosaminoglycan widely explored for cartilage regeneration. Its bioactivity is influenced by sulfation degree and pattern, and distinct sulfation in marine CS may open new therapeutic possibilities. In this context, we studied for the first time the isolation and characterisation of CS from Rabbit Fish (Chimaera monstrosa). We propose an efficient process starting with enzymatic hydrolysis, followed by chemical treatments and ending in membrane purification. All steps were optimised by response surface methodology. Chemical treatment by alkaline-hydroalcoholic precipitation led to 99% purity CS suitable for biomedical and pharmaceutical applications, and treatment by alkaline hydrolysis yielded CS adequate for nutraceutical formulations (89% purity). Molecular weight and sulfation profiles were similar for both materials. Gel permeation chromatography analyses resulted in molecular weights (Mn) of 51-55 kDa. NMR and SAX-HPLC revealed dominant 6S-GalNAc sulfation (4S/6S ratio of 0.4), 17% of GlcA 2S-GalNAc 6S and minor quantities of other disaccharides.


Assuntos
Fracionamento Químico/métodos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Peixes , Animais , Cartilagem/química , Dissacarídeos/análise , Hidrólise , Membranas Artificiais , Peso Molecular , Proteólise
18.
Mar Drugs ; 17(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634550

RESUMO

The small-spotted catshark is one of the most abundant elasmobranchs in the Northeastern Atlantic Ocean. Although its landings are devoted for human consumption, in general this species has low commercial value with high discard rates, reaching 100% in some European fisheries. The reduction of post-harvest losses (discards and by-products) by promotion of a full use of fishing captures is one of the main goals of EU fishing policies. As marine collagens are increasingly used as alternatives to mammalian collagens for cosmetics, tissue engineering, etc., fish skins represent an excellent and abundant source for obtaining this biomolecule. The aim of this study was to analyze the influence of chemical treatment concentration, temperature and time on the extractability of skin collagen from this species. Two experimental designs, one for each of the main stages of the process, were performed by means of Response Surface Methodology (RSM). The combined effect of NaOH concentration, time and temperature on the amount of collagen recovered in the first stage of the collagen extraction procedure was studied. Then, skins treated under optimal NaOH conditions were subjected to a second experimental design, to study the combined effect of AcOH concentration, time and temperature on the collagen recovery by means of yield, amino acid content and SDS-PAGE characterization. Values of independent variables maximizing collagen recovery were 4 °C, 2 h and 0.1 M NaOH (pre-treatment) and 25 °C, 34 h and 1 M AcOH (collagen extraction).


Assuntos
Fracionamento Químico/métodos , Colágeno/química , Tubarões , Pele/química , Animais
19.
Mar Drugs ; 16(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241332

RESUMO

Chondroitin sulfate (CS) is a glycosaminoglycan actively researched for pharmaceutical, nutraceutical and tissue engineering applications. CS extracted from marine animals displays different features from common terrestrial sources, resulting in distinct properties, such as anti-viral and anti-metastatic. Therefore, exploration of undescribed marine species holds potential to expand the possibilities of currently-known CS. Accordingly, we have studied for the first time the production and characterization of CS from blackmouth catshark (Galeus melastomus), a shark species commonly discarded as by-catch. The process of CS purification consists of cartilage hydrolysis with alcalase, followed by two different chemical treatments and ending with membrane purification. All steps were optimized by response surface methodology. According to this, the best conditions for cartilage proteolysis were established at 52.9 °C and pH = 7.31. Subsequent purification by either alkaline treatment or hydroalcoholic alkaline precipitation yielded CS with purities of 81.2%, 82.3% and 97.4% respectively, after 30-kDa membrane separation. The molecular weight of CS obtained ranges 53⁻66 kDa, depending on the conditions. Sulfation profiles were similar for all materials, with dominant CS-C (GlcA-GalNAc6S) units (55%), followed by 23⁻24% of CS-A (GlcA-GalNAc4S), a substantial amount (15⁻16%) of CS-D (GlcA2S-GalNAc6S) and less than 7% of other disulfated and unsulfated disaccharides.


Assuntos
Produtos Biológicos/química , Cartilagem/química , Sulfatos de Condroitina/isolamento & purificação , Tubarões , Álcalis/química , Animais , Produtos Biológicos/isolamento & purificação , Sulfatos de Condroitina/química , Hidrólise , Peso Molecular , Subtilisinas/química
20.
Mar Drugs ; 16(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081528

RESUMO

The high prevalence of bone defects has become a worldwide problem. Despite the significant amount of research on the subject, the available therapeutic solutions lack efficiency. Autografts, the most commonly used approaches to treat bone defects, have limitations such as donor site morbidity, pain and lack of donor site. Marine resources emerge as an attractive alternative to extract bioactive compounds for further use in bone tissue-engineering approaches. On one hand they can be isolated from by-products, at low cost, creating value from products that are considered waste for the fish transformation industry. One the other hand, religious constraints will be avoided. We isolated two marine origin materials, collagen from shark skin (Prionace glauca) and calcium phosphates from the teeth of two different shark species (Prionace glauca and Isurus oxyrinchus), and further proposed to mix them to produce 3D composite structures for hard tissue applications. Two crosslinking agents, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride/N-Hydroxysuccinimide (EDC/NHS) and hexamethylene diisocyanate (HMDI), were tested to enhance the scaffolds' properties, with EDC/NHS resulting in better properties. The characterization of the structures showed that the developed composites could support attachment and proliferation of osteoblast-like cells. A promising scaffold for the engineering of bone tissue is thus proposed, based on a strategy of marine by-products valorisation.


Assuntos
Apatitas/química , Colágeno/química , Tubarões , Alicerces Teciduais/química , Animais , Apatitas/isolamento & purificação , Materiais Biocompatíveis/química , Materiais Biocompatíveis/isolamento & purificação , Osso e Ossos/lesões , Colágeno/isolamento & purificação , Reagentes de Ligações Cruzadas/química , Regeneração Tecidual Guiada/métodos , Teste de Materiais , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...