Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Bacteriol ; 206(4): e0006824, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38517170

RESUMO

Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.


Assuntos
Proteínas de Bactérias , Doenças dos Peixes , Animais , Proteínas de Bactérias/metabolismo , Virulência , Proteínas Motores Moleculares/metabolismo , Flavobacterium , Doenças dos Peixes/microbiologia
2.
J Infect Dis ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041851

RESUMO

Bone and joint infections (BJIs) are difficult to treat and affect a growing number of patients, in which relapses are observed in 10-20% of the case. These relapses, which call for prolonged antibiotic treatment and increase resistance emergence risk, may originate from ill understood adaptation of the pathogen to the host. Here, we investigated three pairs of Escherichia coli strains from BJI cases and their relapses to unravel in-patient adaptation. Whole genome comparison presented evidence for positive selection and phenotypic characterization showed that biofilm formation remained unchanged, contrary to what is usually described in such cases. Although virulence was not modified, we identified the loss of two virulence factors contributing to immune system evasion in one of the studied strains. Other strategies, including global growth optimization and colicin production, likely allowed the strains to outcompete competitors. This work highlights the variety of strategies allowing in-patient adaptation in BJIs.

3.
Microbiome ; 11(1): 252, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951983

RESUMO

BACKGROUND: Perturbations of animal-associated microbiomes from chemical stress can affect host physiology and health. While dysbiosis induced by antibiotic treatments and disease is well known, chemical, nonantibiotic drugs have recently been shown to induce changes in microbiome composition, warranting further exploration. Loperamide is an opioid-receptor agonist widely prescribed for treating acute diarrhea in humans. Loperamide is also used as a tool to study the impact of bowel dysfunction in animal models by inducing constipation, but its effect on host-associated microbiota is poorly characterized. RESULTS: We used conventional and gnotobiotic larval zebrafish models to show that in addition to host-specific effects, loperamide also has anti-bacterial activities that directly induce changes in microbiota diversity. This dysbiosis is due to changes in bacterial colonization, since gnotobiotic zebrafish mono-colonized with bacterial strains sensitive to loperamide are colonized up to 100-fold lower when treated with loperamide. Consistently, the bacterial diversity of gnotobiotic zebrafish colonized by a mix of 5 representative bacterial strains is affected by loperamide treatment. CONCLUSION: Our results demonstrate that loperamide, in addition to host effects, also induces dysbiosis in a vertebrate model, highlighting that established treatments can have underlooked secondary effects on microbiota structure and function. This study further provides insights for future studies exploring how common medications directly induce changes in host-associated microbiota. Video Abstract.


Assuntos
Loperamida , Microbiota , Humanos , Animais , Loperamida/efeitos adversos , Peixe-Zebra/microbiologia , Disbiose/induzido quimicamente , Constipação Intestinal/induzido quimicamente , Bactérias
4.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778358

RESUMO

Gnotobiotic animal models reconventionalized under controlled laboratory conditions with multi-species bacterial communities are commonly used to study host-microbiota interactions under presumably more reproducible conditions than conventional animals. The usefulness of these models is however limited by inter-animal variability in bacterial colonization and our general lack of understanding of the inter-individual fluctuation and spatio-temporal dynamics of microbiota assemblies at the micron to millimeter scale. Here, we show underreported variability in gnotobiotic models by analyzing differences in gut colonization efficiency, bacterial composition, and host intestinal mucus production between conventional and gnotobiotic zebrafish larvae re-conventionalized with a mix of 9 bacteria isolated from conventional microbiota. Despite similar bacterial community composition, we observed high variability in the spatial distribution of bacteria along the intestinal tract in the reconventionalized model. We also observed that, whereas bacteria abundance and intestinal mucus per fish were not correlated, reconventionalized fish had lower intestinal mucus compared to conventional animals, indicating that the stimulation of mucus production depends on the microbiota composition. Our findings, therefore, suggest that variable colonization phenotypes affect host physiology and impact the reproducibility of experimental outcomes in studies that use gnotobiotic animals. This work provides insights into the heterogeneity of gnotobiotic models and the need to accurately assess re-conventionalization for reproducibility in host-microbiota studies.

5.
Front Cell Infect Microbiol ; 13: 1093393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816589

RESUMO

Flavobacterium columnare causes columnaris disease in freshwater fish in both natural and aquaculture settings. This disease is often lethal, especially when fish population density is high, and control options such as vaccines are limited. The type IX secretion system (T9SS) is required for F. columnare virulence, but secreted virulence factors have not been fully identified. Many T9SS-secreted proteins are predicted peptidases, and peptidases are common virulence factors of other pathogens. T9SS-deficient mutants, such as ΔgldN and ΔporV, exhibit strong defects in secreted proteolytic activity. The F. columnare genome has many peptidase-encoding genes that may be involved in nutrient acquisition and/or virulence. Mutants lacking individual peptidase-encoding genes, or lacking up to ten peptidase-encoding genes, were constructed and examined for extracellular proteolytic activity, for growth defects, and for virulence in zebrafish and rainbow trout. Most of the mutants retained virulence, but a mutant lacking 10 peptidases, and a mutant lacking the single peptidase TspA exhibited decreased virulence in rainbow trout fry, suggesting that peptidases contribute to F. columnare virulence.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Virulência , Peptídeo Hidrolases/metabolismo , Peixe-Zebra , Infecções por Flavobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Fatores de Virulência/metabolismo , Flavobacterium
6.
Front Cell Infect Microbiol ; 12: 1029833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325469

RESUMO

Flavobacterium columnare, which causes columnaris disease, is one of the costliest pathogens in the freshwater fish-farming industry. The virulence mechanisms of F. columnare are not well understood and current methods to control columnaris outbreaks are inadequate. Iron is an essential nutrient needed for metabolic processes and is often required for bacterial virulence. F. columnare produces siderophores that bind ferric iron for transport into the cell. The genes needed for siderophore production have been identified, but other components involved in F. columnare iron uptake have not been studied in detail. We identified the genes encoding the predicted secreted heme-binding protein HmuY, the outer membrane iron receptors FhuA, FhuE, and FecA, and components of an ATP binding cassette (ABC) transporter predicted to transport ferric iron across the cytoplasmic membrane. Deletion mutants were constructed and examined for growth defects under iron-limited conditions and for virulence against zebrafish and rainbow trout. Mutants with deletions in genes encoding outer membrane receptors, and ABC transporter components exhibited growth defects under iron-limited conditions. Mutants lacking multiple outer membrane receptors, the ABC transporter, or HmuY retained virulence against zebrafish and rainbow trout mirroring that exhibited by the wild type. Some mutants predicted to be deficient in multiple steps of iron uptake exhibited decreased virulence. Survivors of exposure to such mutants were partially protected against later infection by wild-type F. columnare.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Virulência/genética , Infecções por Flavobacteriaceae/microbiologia , Peixe-Zebra , Doenças dos Peixes/microbiologia , Flavobacterium/genética , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/microbiologia , Sideróforos/genética , Sideróforos/metabolismo , Ferro/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
7.
Appl Environ Microbiol ; 88(3): e0170521, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818105

RESUMO

Flavobacterium columnare causes columnaris disease in wild and cultured freshwater fish and is a major problem for sustainable aquaculture worldwide. The F. columnare type IX secretion system (T9SS) secretes many proteins and is required for virulence. The T9SS component GldN is required for secretion and gliding motility over surfaces. Genetic manipulation of F. columnare is inefficient, which has impeded identification of secreted proteins that are critical for virulence. Here, we identified a virulent wild-type F. columnare strain (MS-FC-4) that is highly amenable to genetic manipulation. This facilitated isolation and characterization of two deletion mutants lacking core components of the T9SS. Deletion of gldN disrupted protein secretion and gliding motility and eliminated virulence in zebrafish and rainbow trout. Deletion of porV disrupted secretion and virulence but not motility. Both mutants exhibited decreased extracellular proteolytic, hemolytic, and chondroitin sulfate lyase activities. They also exhibited decreased biofilm formation and decreased attachment to fish fins and other surfaces. Using genomic and proteomic approaches, we identified proteins secreted by the T9SS. We deleted 10 genes encoding secreted proteins and characterized the virulence of mutants lacking individual or multiple secreted proteins. A mutant lacking two genes encoding predicted peptidases exhibited reduced virulence in rainbow trout, and mutants lacking a predicted cytolysin showed reduced virulence in zebrafish and rainbow trout. The results establish F. columnare strain MS-FC-4 as a genetically amenable model to identify virulence factors. This may aid development of measures to control columnaris disease and impact fish health and sustainable aquaculture. IMPORTANCE Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish and is a major problem for aquaculture. Little is known regarding the virulence factors involved in this disease, and control measures are inadequate. The type IX secretion system (T9SS) secretes many proteins and is required for virulence, but the secreted virulence factors are not known. We identified a strain of F. columnare (MS-FC-4) that is well suited for genetic manipulation. The components of the T9SS and the proteins secreted by this system were identified. Deletion of core T9SS genes eliminated virulence. Genes encoding 10 secreted proteins were deleted. Deletion of two peptidase-encoding genes resulted in decreased virulence in rainbow trout, and deletion of a cytolysin-encoding gene resulted in decreased virulence in rainbow trout and zebrafish. Secreted peptidases and cytolysins are likely virulence factors and are targets for the development of control measures.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Animais , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Proteômica , Virulência , Peixe-Zebra
8.
Anim Microbiome ; 3(1): 74, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689834

RESUMO

BACKGROUND: The gut microbiota influences host performance playing a relevant role in homeostasis and function of the immune system. The aim of the present work was to identify microbial signatures linked to immunity traits and to characterize the contribution of host-genome and gut microbiota to the immunocompetence in healthy pigs. RESULTS: To achieve this goal, we undertook a combination of network, mixed model and microbial-wide association studies (MWAS) for 21 immunity traits and the relative abundance of gut bacterial communities in 389 pigs genotyped for 70K SNPs. The heritability (h2; proportion of phenotypic variance explained by the host genetics) and microbiability (m2; proportion of variance explained by the microbial composition) showed similar values for most of the analyzed immunity traits, except for both IgM and IgG in plasma that was dominated by the host genetics, and the haptoglobin in serum which was the trait with larger m2 (0.275) compared to h2 (0.138). Results from the MWAS suggested a polymicrobial nature of the immunocompetence in pigs and revealed associations between pigs gut microbiota composition and 15 of the analyzed traits. The lymphocytes phagocytic capacity (quantified as mean fluorescence) and the total number of monocytes in blood were the traits associated with the largest number of taxa (6 taxa). Among the associations identified by MWAS, 30% were confirmed by an information theory network approach. The strongest confirmed associations were between Fibrobacter and phagocytic capacity of lymphocytes (r = 0.37), followed by correlations between Streptococcus and the percentage of phagocytic lymphocytes (r = -0.34) and between Megasphaera and serum concentration of haptoglobin (r = 0.26). In the interaction network, Streptococcus and percentage of phagocytic lymphocytes were the keystone bacterial and immune-trait, respectively. CONCLUSIONS: Overall, our findings reveal an important connection between gut microbiota composition and immunity traits in pigs, and highlight the need to consider both sources of information, host genome and microbial levels, to accurately characterize immunocompetence in pigs.

9.
Anim Microbiome ; 3(1): 47, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225826

RESUMO

BACKGROUND: Farmed fish food with reduced fish-derived products are gaining growing interest due to the ecological impact of fish-derived protein utilization and the necessity to increase aquaculture sustainability. Although different terrestrial plant proteins could replace fishmeal proteins, their use is associated with adverse effects. Here, we investigated how diets composed of terrestrial vegetal sources supplemented with proteins originating from insect, yeast or terrestrial animal by-products affect rainbow trout (Onchorynchus mykiss) gut microbiota composition, growth performance and resistance to bacterial infection by the fish pathogen Flavobacterium psychrophilum responsible for frequent outbreaks in aquaculture settings. RESULTS: We showed that the tested regimes significantly increased gut bacterial richness compared to full vegetal or commercial-like diets, and that vegetal diet supplemented with insect and yeast proteins improves growth performance compared to full vegetal diet without altering rainbow trout susceptibility to F. psychrophilum infection. CONCLUSION: Our results demonstrate that the use of insect and yeast protein complements to vegetal fish feeds maintain microbiota functions, growth performance and fish health, therefore identifying promising alternative diets to improve aquaculture's sustainability.

10.
PLoS Pathog ; 17(1): e1009302, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513205

RESUMO

The health and environmental risks associated with antibiotic use in aquaculture have promoted bacterial probiotics as an alternative approach to control fish infections in vulnerable larval and juvenile stages. However, evidence-based identification of probiotics is often hindered by the complexity of bacteria-host interactions and host variability in microbiologically uncontrolled conditions. While these difficulties can be partially resolved using gnotobiotic models harboring no or reduced microbiota, most host-microbe interaction studies are carried out in animal models with little relevance for fish farming. Here we studied host-microbiota-pathogen interactions in a germ-free and gnotobiotic model of rainbow trout (Oncorhynchus mykiss), one of the most widely cultured salmonids. We demonstrated that germ-free larvae raised in sterile conditions displayed no significant difference in growth after 35 days compared to conventionally-raised larvae, but were extremely sensitive to infection by Flavobacterium columnare, a common freshwater fish pathogen causing major economic losses worldwide. Furthermore, re-conventionalization with 11 culturable species from the conventional trout microbiota conferred resistance to F. columnare infection. Using mono-re-conventionalized germ-free trout, we identified that this protection is determined by a commensal Flavobacterium strain displaying antibacterial activity against F. columnare. Finally, we demonstrated that use of gnotobiotic trout is a suitable approach for the identification of both endogenous and exogenous probiotic bacterial strains protecting teleostean hosts against F. columnare. This study therefore establishes an ecologically-relevant gnotobiotic model for the study of host-pathogen interactions and colonization resistance in farmed fish.


Assuntos
Doenças dos Peixes/microbiologia , Flavobacterium/fisiologia , Vida Livre de Germes , Interações Hospedeiro-Patógeno , Microbiota , Oncorhynchus mykiss/microbiologia , Animais , Aquicultura , Água Doce
11.
ISME J ; 15(3): 702-719, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077888

RESUMO

The long-known resistance to pathogens provided by host-associated microbiota fostered the notion that adding protective bacteria could prevent or attenuate infection. However, the identification of endogenous or exogenous bacteria conferring such protection is often hindered by the complexity of host microbial communities. Here, we used zebrafish and the fish pathogen Flavobacterium columnare as a model system to study the determinants of microbiota-associated colonization resistance. We compared infection susceptibility in germ-free, conventional and reconventionalized larvae and showed that a consortium of 10 culturable bacterial species are sufficient to protect zebrafish. Whereas survival to F. columnare infection does not rely on host innate immunity, we used antibiotic dysbiosis to alter zebrafish microbiota composition, leading to the identification of two different protection strategies. We first identified that the bacterium Chryseobacterium massiliae individually protects both larvae and adult zebrafish. We also showed that an assembly of 9 endogenous zebrafish species that do not otherwise protect individually confer a community-level resistance to infection. Our study therefore provides a rational approach to identify key endogenous protecting bacteria and promising candidates to engineer resilient microbial communities. It also shows how direct experimental analysis of colonization resistance in low-complexity in vivo models can reveal unsuspected ecological strategies at play in microbiota-based protection against pathogens.


Assuntos
Microbiota , Peixe-Zebra , Animais , Disbiose , Flavobacterium/genética
12.
Microorganisms ; 8(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899237

RESUMO

Innovative fish diets made of terrestrial plants supplemented with sustainable protein sources free of fish-derived proteins could contribute to reducing the environmental impact of the farmed fish industry. However, such alternative diets may influence fish gut microbial community, health, and, ultimately, growth performance. Here, we developed five fish feed formulas composed of terrestrial plant-based nutrients, in which fish-derived proteins were substituted with sustainable protein sources, including insect larvae, cyanobacteria, yeast, or recycled processed poultry protein. We then analyzed the growth performance of European sea bass (Dicentrarchus labrax L.) and the evolution of gut microbiota of fish fed the five formulations. We showed that replacement of 15% protein of a vegetal formulation by insect or yeast proteins led to a significantly higher fish growth performance and feed intake when compared with the full vegetal formulation, with feed conversion ratio similar to a commercial diet. 16S rRNA gene sequencing monitoring of the sea bass gut microbial community showed a predominance of Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes phyla. The partial replacement of protein source in fish diets was not associated with significant differences on gut microbial richness. Overall, our study highlights the adaptability of European sea bass gut microbiota composition to changes in fish diet and identifies promising alternative protein sources for sustainable aquafeeds with terrestrial vegetal complements.

13.
Nat Commun ; 8(1): 1685, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29162826

RESUMO

Macroalgae contribute substantially to primary production in coastal ecosystems. Their biomass, mainly consisting of polysaccharides, is cycled into the environment by marine heterotrophic bacteria using largely uncharacterized mechanisms. Here we describe the complete catabolic pathway for carrageenans, major cell wall polysaccharides of red macroalgae, in the marine heterotrophic bacterium Zobellia galactanivorans. Carrageenan catabolism relies on a multifaceted carrageenan-induced regulon, including a non-canonical polysaccharide utilization locus (PUL) and genes distal to the PUL, including a susCD-like pair. The carrageenan utilization system is well conserved in marine Bacteroidetes but modified in other phyla of marine heterotrophic bacteria. The core system is completed by additional functions that might be assumed by non-orthologous genes in different species. This complex genetic structure may be the result of multiple evolutionary events including gene duplications and horizontal gene transfers. These results allow for an extension on the definition of bacterial PUL-mediated polysaccharide digestion.


Assuntos
Carragenina/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Regulon , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Cristalografia por Raios X , Evolução Molecular , Galactosidases/química , Galactosidases/genética , Galactosidases/metabolismo , Genes Bacterianos , Redes e Vias Metabólicas/genética , Modelos Moleculares , Família Multigênica , Filogenia , Conformação Proteica , RNA Bacteriano/genética , Análise de Sequência de RNA , Especificidade da Espécie
14.
Front Microbiol ; 8: 2168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163446

RESUMO

A fascinating characteristic of most members of the genus Flavobacterium is their ability to move over surfaces by gliding motility. Flavobacterium psychrophilum, an important pathogen of farmed salmonids worldwide, contains in its genome the 19 gld and spr genes shown to be required for gliding or spreading in Flavobacterium johnsoniae; however, their relative role in its lifestyle remains unknown. In order to address this issue, two spreading deficient mutants were produced as part of a Tn4351 mutant library in F. psychrophilum strain THCO2-90. The transposons were inserted in gldD and gldG genes. While the wild-type strain is proficient in adhesion, biofilm formation and displays strong proteolytic activity, both mutants lost these characteristics. Extracellular proteome comparisons revealed important modifications for both mutants, with a significant reduction of the amounts of proteins likely transported through the outer membrane by the Type IX secretion system, indicating that GldD and GldG proteins are required for an effective activity of this system. In addition, a significant decrease in virulence was observed using rainbow trout bath and injection infection models. Our results reveal additional roles of gldD and gldG genes that are likely of importance for the F. psychrophilum lifestyle, including virulence.

15.
Front Microbiol ; 8: 1542, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861057

RESUMO

Tenacibaculum maritimum is a devastating bacterial pathogen of wild and farmed marine fish with a broad host range and a worldwide distribution. We report here the complete genome sequence of the T. maritimum type strain NCIMB 2154T. The genome consists of a 3,435,971-base pair circular chromosome with 2,866 predicted protein-coding genes. Genes encoding the biosynthesis of exopolysaccharides, the type IX secretion system, iron uptake systems, adhesins, hemolysins, proteases, and glycoside hydrolases were identified. They are likely involved in the virulence process including immune escape, invasion, colonization, destruction of host tissues, and nutrient scavenging. Among the predicted virulence factors, type IX secretion-mediated and cell-surface exposed proteins were identified including an atypical sialidase, a sphingomyelinase and a chondroitin AC lyase which activities were demonstrated in vitro.

16.
Genome Announc ; 5(8)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28232446

RESUMO

We report here the complete annotated genome sequence of Flavobacterium psychrophilum OSU THCO2-90, isolated from Coho salmon (Oncorhynchus kisutch) in Oregon. The genome consists of a circular chromosome with 2,343 predicted open reading frames. This strain has proved to be a valuable tool for functional genomics.

17.
Front Microbiol ; 7: 706, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242728

RESUMO

Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell-cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell-cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host-microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence.

18.
Vet Res ; 46: 1, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25582708

RESUMO

Flavobacterium psychrophilum is an important fish pathogen, responsible for Cold Water Disease, with a significant economic impact on salmonid farms worldwide. In spite of this, little is known about the bacterial physiology and pathogenesis mechanisms, maybe because it is difficult to manipulate, being considered a fastidious microorganism. Mutants obtained using a Tn4351 transposon were screened in order to identify those with alteration in colony morphology, colony spreading and extracellular proteolytic activity, amongst other phenotypes. A F. psychrophilum mutant lacking gliding motility showed interruption of the FP1638 locus that encodes a putative type-2 glycosyltransferase (from here on referred to as fpgA gene, Flavobacterium psychrophilum glycosyltransferase). Additionally, the mutant also showed a decrease in the extracellular proteolytic activity as a consequence of down regulation in the fpgA mutant background of the fpp2-fpp1 operon promoter, responsible for the major extracellular proteolytic activity of the bacterium. The protein glycosylation profile of the parental strain showed the presence of a 22 kDa glycosylated protein which is lost in the mutant. Complementation with the fpgA gene led to the recovery of the wild-type phenotype. LD50 experiments in the rainbow trout infection model show that the mutant was highly attenuated. The pleiotropic phenotype of the mutant demonstrated the importance of this glycosyltranferase in the physiology and virulence of the bacterium. Moreover, the fpgA mutant strain could be considered a good candidate for the design of an attenuated vaccine.


Assuntos
Proteínas de Bactérias/genética , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/enzimologia , Flavobacterium/patogenicidade , Glicosiltransferases/genética , Oncorhynchus mykiss , Animais , Proteínas de Bactérias/metabolismo , Doenças dos Peixes/enzimologia , Infecções por Flavobacteriaceae/enzimologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/genética , Glicosiltransferases/metabolismo , Dose Letal Mediana , Virulência
19.
mBio ; 6(1)2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25604789

RESUMO

UNLABELLED: Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae's ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. IMPORTANCE: Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we identified the different players involved in the SHP/Rgg system in S. agalactiae, which is the leading agent of severe infections in human newborns. We have identified a direct target of the Rgg regulator in S. agalactiae (called RovS) and examined a previously proposed target, all in the context of associated SHP. For the first time, we have also demonstrated the implication of the SHP/RovS mechanism in virulence, as well as its host organ specificity. Thus, this cell-to-cell communication system may represent a future target for S. agalactiae disease treatment.


Assuntos
Peptídeos/metabolismo , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidade , Animais , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Peptídeos/genética , Sinais Direcionadores de Proteínas , Infecções Estreptocócicas/genética , Streptococcus agalactiae/citologia , Streptococcus agalactiae/genética , Virulência
20.
Virulence ; 5(5): 619-24, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24865652

RESUMO

In an attempt to dissect the virulence mechanisms of Yersinia ruckeri two adjacent genes, yrpA and yrpB, encoding putative peptidases belonging to the U32 family, were analyzed. Similar genes, with the same genetic organization were identified in genomic analysis of human-pathogenic yersiniae. RT-PCR studies indicated that these genes form an operon in Y. ruckeri. Transcriptional studies using an yrpB::lacZY fusion showed high levels of expression of these genes in the presence of peptone in the culture medium, as well as under oxygen-limited conditions. These two factors had a synergic effect on gene induction when both were present simultaneously during bacterial incubation, which indicates the important role that environmental conditions in the fish gut can play in the regulation of specific genes. LD 50 experiments using an yrpA insertional mutant strain demonstrated the participation of this gene in the virulence of Y. ruckeri.


Assuntos
Doenças dos Peixes/microbiologia , Regulação Bacteriana da Expressão Gênica , Peptídeo Hidrolases/metabolismo , Fatores de Virulência/metabolismo , Yersiniose/veterinária , Yersinia ruckeri/genética , Yersinia ruckeri/patogenicidade , Aerobiose , Anaerobiose , Animais , Fusão Gênica Artificial , Doenças dos Peixes/patologia , Deleção de Genes , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Genes Reporter , Dose Letal Mediana , Mutagênese Insercional , Oncorhynchus mykiss , Óperon , Peptídeo Hidrolases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência , Fatores de Virulência/genética , Yersiniose/microbiologia , Yersiniose/patologia , beta-Galactosidase/análise , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...