Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675049

RESUMO

Enterocin DD14 (EntDD14) is a two-peptide leaderless bacteriocin produced by the Enterococcus faecalis 14 strain previously isolated from meconium. This bacteriocin is mainly active against Gram-positive bacteria. Leaderless bacteriocins do not undergo post-translational modifications and are therefore immediately active after their synthesis. As a result, the cells that produce such bacteriocins have developed means of protection against them which often involve transport systems. In this and our previous work, we constructed different mutants deleted in the genes involved in the transport functions, thus covering all the supposed components of this transport system, using Listeria innocua ATCC 33090 as the indicator strain to assess the activity of externalized EntDD14. We also assessed the self-resistance of the WT and all its engineered derivative mutants against EntDD14, provided extracellularly, in order to evaluate their self-resistance. The results obtained highlight that the ABC transporter constituted by the DdG, H, I, and J proteins contributes to EntDD14 export as well as resistance to an external supply of EntDD14. Our results also have established the essential role of the DdE and DdF proteins as primary transporters dedicated to the externalization of EntDD14. Moreover, the in silico data showed that DdE and DdF appear to assemble in a formation that forms an essential channel for the exit of EntDD14. This channel DdEF may interact with the ABC transporter DdGHIJ in order to control the flow of bacteriocin across the membrane, although the nature of this interaction remains to be elucidated.


Assuntos
Bacteriocinas , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Peptídeos/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo
2.
Probiotics Antimicrob Proteins ; 14(4): 613-619, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604525

RESUMO

In this study, we investigate the interactions between the leaderless class IIb bacteriocin, enterocin DD14 (EntDD14), or the methicillin or the combination of these antibacterials, and two methicillin-resistant Staphylococcus aureus strains (MRSA-S1 and USA 300) which are respectively a clinical strain and a reference strain. The results obtained showed that EntDD14 alone or in combination with the antibiotic could significantly prevent the adhesion of these pathogenic bacteria to human cells. On the other hand, we investigated the anti-inflammatory effect of EntDD14 on the secretion of pro-inflammatory interleukins, including IL-6 and IL-8. The results show that EntDD14 is able to decrease significantly the secretion of both interleukins on Caco-2 cells following their treatments with lipopolysaccharides. These novel data provide insightful informations to support applications of bacteriocins as therapeutic agents capable as well to defeat pathogenic bacteria and concomitantly limit their inflammatory reactions.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias , Bacteriocinas/farmacologia , Hidrocarbonetos Aromáticos com Pontes , Células CACO-2 , Humanos
3.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34884682

RESUMO

Bacteriocins synthesis is initiated from an inactive precursor, which is composed of an N-terminal leader peptide attached to a C-terminal pro-peptide. However, leaderless bacteriocins (LLB) do not possess this N-terminal leader peptide nor undergo post-translational modifications. These atypical bacteriocins are observed to be immediately active after their translation in the cytoplasm. However, although considered to be simple, the biosynthetic pathway of LLB remains to be fully understood. Enterocin DD14 (EntDD14) is a two-peptide LLB produced by Enterococcus faecalis 14, which is a strain isolated from meconium. In silico analysis of DNA encoding EntDD14 located a cluster of 10 genes ddABCDEFGHIJ, where ddE and ddF encode the peculiar DdE and DdF proteins, carrying pleckstrin homology (PH) domains. These modules are quite common in Eucarya proteins and are known to be involved in intracellular signaling or cytoskeleton organization. To elucidate their role within the EntDD14 genetic determinants, we constructed deletion mutants of the ddE and ddF genes. As a result, the mutants were unable to export EntDD14 outside of the cytoplasm even though there was a clear expression of structural genes ddAB encoding EntDD14, and genes ddHIJ encoding an ABC transporter. Importantly, in these mutant strains (ΔddE and ΔddF), EntDD14 was detected by mass spectrometry in the intracellular soluble fraction exerting, upon its accumulation, a toxic effect on the producing strain as revealed by cell-counting and confocal microscopy analysis. Taken together, these results clearly indicate that PH domain-containing proteins, such as DdE and DdF, are involved in the transport of the leaderless two-peptide EntDD14.


Assuntos
Bacteriocinas/metabolismo , Domínios de Homologia à Plecstrina , Bacteriocinas/genética , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Simulação por Computador , Enterococcus faecalis , Óperon
4.
Microorganisms ; 9(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34683428

RESUMO

Bacteriocins produced by lactic acid bacteria (LAB-bacteriocins) may serve as alternatives for aging antibiotics. LAB-bacteriocins can be used alone, or in some cases as potentiating agents to treat bacterial infections. This approach could meet the different calls and politics, which aim to reduce the use of traditional antibiotics and develop novel therapeutic options. Considering the clinical applications of LAB-bacteriocins as a reasonable and desirable therapeutic approach, it is therefore important to assess the advances achieved in understanding their modes of action, and the resistance mechanisms developed by the producing bacteria to their own bacteriocins. Most LAB-bacteriocins act by disturbing the cytoplasmic membrane through forming pores, or by cell wall degradation. Nevertheless, some of these peptides still have unknown modes of action, especially those that are active against Gram-negative bacteria. Regarding immunity, most bacteriocin-producing strains have an immunity mechanism involving an immunity protein and a dedicated ABC transporter system. However, these immunity mechanisms vary from one bacteriocin to another.

5.
Int J Food Microbiol ; 334: 108804, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32818764

RESUMO

Listeria monocytogenes can form long-lasting biofilms on food-contact surfaces. Lactic acid bacteria (LAB) have shown promise in antagonizing this microorganism in liquid media. However, the ecological relationships differ when cells are forming biofilms. In this work, we propose the use of Lactobacillus biofilms as surface "conditioners" to modulate the adhesion of L. monocytogenes. For this, the biofilm formation ability of Lactobacillus fermentum MP26 and Lactobacillus salivarius MP14 (human milk origin), fluorescently labeled by transfer of the mCherry-encoding pRCR12 plasmid, was first evaluated. Then, mature biofilms of these strains transformed with pRCR12 for expressing the fluorescent protein mCherry were used as adhesion substrate for GFP-tagged L. monocytogenes Scott A. The resulting biofilms were studied in terms of cellular population and attached biomass (cells plus matrix). Species distribution inside the biofilm structure was revealed by confocal laser scanning microscopy (CLSM). Although none of the Lactobacillus spp. strains reduced the adhesion of L. monocytogenes Scott A, species interactions seem to interfere with the synthesis of extracellular polymeric substances and species distribution inside the biofilms. In dual-species biofilms, CLSM images revealed that Lactobacillus cells were trapping those of L. monocytogenes Scott A. When surfaces were conditioned with Lactobacillus biofilms, the spatial distribution of L. monocytogenes Scott A cells was species-specific, suggesting these interactions are governing the ultimate biofilm structure. The results here obtained open new possibilities for controlling L. monocytogenes dispersal using these Lactobacillus spp. biofilms as a "natural" immobilization way. Whether species interactions could modify the virulence of L. monocytogenes still remains unclear.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes , Vidro/química , Lactobacillus/fisiologia , Listeria monocytogenes/fisiologia , Biofilmes/crescimento & desenvolvimento , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Humanos , Interações Microbianas
6.
Front Microbiol ; 9: 2041, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233527

RESUMO

Pediococcus ethanolidurans CUPV141 is an exopolysaccharide (EPS)-producing lactic acid bacterium, first isolated from Basque Country cider (Spain). Physicochemical analysis of the EPS synthesized by the bacterium revealed that CUPV141 produces mostly a homopolysaccharide (HoPS), characterized as a 2-substituted (1,3)-ß-D-glucan, together with a small quantity of a heteropolysaccharide (HePS) composed of glucose, galactose, glucosamine, and glycerol-3-phosphate, this being the first Pediococcus strain described to produce this kind of polymer. On the contrary, an isogenic strain CUPV141NR, generated by chemical mutagenesis of CUPV141, produced the HePS as the main extracellular polysaccharide and a barely detectable amount of 2-substituted (1,3)-ß-D-glucan. This HoPS is synthesized by the transmembrane GTF glycosyltransferase (GTF), encoded by the gtf gene, which has been previously reported to be located in the pPP2 plasmid of the Pediococcus parvulus 2.6 strain. Southern blot hybridization revealed that in CUPV141 the gtf gene is located in a plasmid designated as pPE3, whose molecular mass (34.4 kbp) is different from that of pPP2 (24.5 kbp). Analysis of the influence of the EPS on the ability of the producing bacteria to adhere to the eukaryotic Caco-2 cells revealed higher affinity for the human enterocytes of CUPV141NR compared to that of CUPV141. This result indicates that, in contrast to the 2.6 strain, the presence of the HoPS does not potentiate the binding ability of P. ethanolidurans. Moreover, it supports that the phosphate-containing bacterial HePS improved the interaction between P. ethanolidurans and the eukaryotic cells.

7.
Front Microbiol ; 9: 1684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090096

RESUMO

Lactic acid bacteria synthesize exopolysaccharides (EPS), which could benefit the host's health as immunomodulators. Furthermore, EPS could protect bacteria against gastrointestinal stress, favoring gut colonization, thus protecting the host against pathogenic infections. Pediococcus parvulus 2.6, produces a 2-substituted (1,3)-ß-D-glucan and, in this work, its probiotic properties as well as the immunomodulatory capability of its EPS have been investigated using Danio rerio (zebrafish). To this end and for a comparative analysis, P. parvulus 2.6 and its isogenic ß-glucan-non-producing 2.6NR strain were fluorescently labeled by transfer of the pRCR12 plasmid, which encodes the mCherry protein. For the in vivo studies, there were used: (i) a gnotobiotic larvae zebrafish model for bacterial colonization, pathogen competition, and evaluation of the ß-glucan immunomodulation capability and (ii) a transgenic (mpx:GFP) zebrafish model to determine the EPS influence in the recruitment of neutrophils under an induced inflammation. The results revealed a positive effect of the ß-glucan on colonization of the zebrafish gut by P. parvulus, as well as in competition of the bacterium with the pathogen Vibrio anguillarum in this environment. The larvae treatment with the purified ß-glucan resulted in a decrease of expression of genes encoding pro-inflammatory cytokines. Moreover, the ß-glucan had an anti-inflammatory effect, when it was evaluated in an induced inflammation model of Tg(mpx:GFP) zebrafish. Therefore, P. parvulus 2.6 and its EPS showed positive health properties in in vivo fish models, supporting their potential usage in aquaculture.

8.
Front Microbiol ; 8: 2393, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259592

RESUMO

Pediococcus parvulus 2.6 secretes a 2-substituted (1,3)-ß-D-glucan with prebiotic and immunomodulatory properties. It is synthesized by the GTF glycosyltransferase using UDP-glucose as substrate. Analysis of the P. parvulus 2.6 draft genome revealed the existence of a sorbitol utilization cluster of six genes (gutFRMCBA), whose products should be involved in sorbitol utilization and could generate substrates for UDP-glucose synthesis. Southern blot hybridization analysis showed that the cluster is located in a plasmid. Analysis of metabolic fluxes and production of the exopolysaccharide revealed that: (i) P. parvulus 2.6 is able to metabolize sorbitol, (ii) sorbitol utilization is repressed in the presence of glucose and (iii) sorbitol supports the synthesis of 2-substituted (1,3)-ß-D-glucan. The sorbitol cluster encodes two putative regulators, GutR and GutM, in addition to a phosphoenolpyruvate-dependent phosphotransferase transport system and sorbitol-6-phosphate dehydrogenase. Therefore, we investigated the involvement of GutR and GutM in the expression of gutFRMCBA. The promoter-probe vector pRCR based on the mrfp gene, which encodes the fluorescence protein mCherry, was used to test the potential promoter of the cluster (P gut ) and the genes encoding the regulators. This was performed by transferring by electrotransformation the recombinant plasmids into two hosts, which metabolize sorbitol: Lactobacillus plantarum and Lactobacillus casei. Upon growth in the presence of sorbitol, but not of glucose, only the presence of P gut was required to support expression of mrfp in L. plantarum. In L. casei the presence of sorbitol in the growth medium and the pediococcal gutR or gutR plus gutM in the genome was required for P gut functionality. This demonstrates that: (i) P gut is required for expression of the gut cluster, (ii) P gut is subjected to catabolic repression in lactobacilli, (iii) GutR is an activator, and (iv) in the presence of sorbitol, trans-complementation for activation of P gut exists in L. plantarum but not in L. casei.

9.
Int J Mol Sci ; 18(7)2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28754020

RESUMO

Bacterial exopolysaccharides produced by lactic acid bacteria are of increasing interest in the food industry, since they might enhance the technological and functional properties of some edible matrices. In this work, Pediococcus parvulus 2.6, which produces an O2-substituted (1,3)-ß-d-glucan exopolysaccharide only synthesised by bacteria, was proposed as a starter culture for the production of three cereal-based fermented foods. The obtained fermented matrices were naturally bio-fortified in microbial ß-glucans, and used to investigate the prebiotic potential of the bacterial exopolysaccharide by analysing the impact on the survival of a probiotic Lactobacillus plantarum strain under starvation and gastrointestinal simulated conditions. All of the assays were performed by using as control of the P. parvulus 2.6's performance, the isogenic ß-glucan non-producing 2.6NR strain. Our results showed a differential capability of P. parvulus to ferment the cereal flours. During the fermentation step, the ß-glucans produced were specifically quantified and their concentration correlated with an increased viscosity of the products. The survival of the model probiotic L. plantarum WCFS1 was improved by the presence of the bacterial ß-glucans in oat and rice fermented foods under starvation conditions. The probiotic bacteria showed a significantly higher viability when submitted to a simulated intestinal stress in the oat matrix fermented by the 2.6 strain. Therefore, the cereal flours were a suitable substrate for in situ bio-fortification with the bacterial ß-glucan, and these matrices could be used as carriers to enhance the beneficial properties of probiotic bacteria.


Assuntos
Grão Comestível/microbiologia , Pediococcus/crescimento & desenvolvimento , beta-Glucanas/metabolismo , Avena/microbiologia , Fermentação , Microbiologia de Alimentos , Lactobacillus plantarum/efeitos dos fármacos , Oryza/microbiologia , Pediococcus/metabolismo , Prebióticos/microbiologia , Probióticos , beta-Glucanas/farmacologia
10.
Genome Announc ; 4(6)2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979937

RESUMO

We report here the draft genome sequence of the probiotic Pediococcus parvulus 2.6, a lactic acid bacterial strain isolated from ropy cider. The bacterium produces a prebiotic and immunomodulatory exopolysaccharide, and this is the first strain of the P. parvulus species whose genome has been characterized.

11.
J Ind Microbiol Biotechnol ; 42(2): 247-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25533634

RESUMO

Lactobacilli are widespread in natural environments and are increasingly being investigated as potential health modulators. In this study, we have adapted the broad-host-range vector pNZ8048 to express the mCherry protein (pRCR) to expand the usage of the mCherry protein for analysis of gene expression in Lactobacillus. This vector is also able to replicate in Streptococcus pneumoniae and Escherichia coli. The usage of pRCR as a promoter probe was validated in Lactobacillus acidophilus by characterizing the regulation of lactacin B expression. The results show that the regulation is exerted at the transcriptional level, with lbaB gene expression being specifically induced by co-culture of the L. acidophilus bacteriocin producer and the S. thermophilus STY-31 inducer bacterium.


Assuntos
Proteínas de Bactérias/genética , Vetores Genéticos/genética , Lactobacillus acidophilus/genética , Regiões Promotoras Genéticas , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Técnicas de Cocultura , DNA Bacteriano/genética , Lactobacillus acidophilus/metabolismo , Dados de Sequência Molecular , Reprodutibilidade dos Testes
12.
Carbohydr Polym ; 113: 39-45, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25256456

RESUMO

Exopolysaccharides synthesized by lactic acid bacteria have prebiotic properties and contribute to the rheology and texture of fermented foods. Here, we have standardized an immunological method for the specific detection of 2-substituted (1,3)-ß-D-glucans. The method allows direct detection and quantification of this exopolysaccharide in culture supernatants containing other mono- and poly-saccharides. Moreover, it allows specific detection of the biomolecules synthesized in vitro in enzymatic reactions. Thus, this method allows the fast identification of producing bacteria, as well as biochemical characterization of the glycosyltransferases responsible for their synthesis.


Assuntos
Bactérias/química , Ensaio de Imunoadsorção Enzimática/métodos , beta-Glucanas/análise , Bactérias/enzimologia , Glicosiltransferases/metabolismo , Proteoglicanas , beta-Glucanas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...