Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1362878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708030

RESUMO

Rhamnolipids (RLs) are highly valuable molecules in the cosmetic, pharmaceutic, and agricultural sectors with outstanding biosurfactant properties. In agriculture, due to their potential to artificially stimulate the natural immune system of crops (also known as elicitation), they could represent a critical substitute to conventional pesticides. However, their current synthesis methods are complex and not aligned with green chemistry principles, posing a challenge for their industrial applications. In addition, their bioproduction is cumbersome with reproducibility issues and expensive downstream processing. This work offers a more straightforward and green access to RLs, crucial to decipher their mechanisms of action and design novel potent and eco-friendly elicitors. To achieve this, we propose an efficient seven-step synthetic pathway toward (R)-3-hydroxyfatty acid chains present in RLs, starting from cellulose-derived levoglucosenone, with Michael addition, Baeyer-Villiger oxidation, Bernet-Vasella reaction, and cross-metathesis homologation as key steps. This method allowed the production of (R)-3-hydroxyfatty acid chains and derivatives with an overall yield ranging from 24% to 36%.

2.
Macromol Rapid Commun ; 45(2): e2300483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37876336

RESUMO

This study focuses on the synthesis of fully renewable polycarbonates (PCs) starting from cellulose-based platform molecules levoglucosenone (LGO) and 2,5-bis(hydroxymethyl)furan (BHMF). These unique bio-based PCs are obtained through the reaction of a citronellol-containing triol (Triol-citro) derived from LGO, with a dimethyl carbonate derivative of BHMF (BHMF-DC). Solvent-free polymerizations are targeted to minimize waste generation and promote an eco-friendly approach with a favorable environmental factor (E-factor). The choice of metal catalyst during polymerization significantly influences the polymer properties, resulting in high molecular weight (up to 755 kDa) when Na2 CO3 is employed as an inexpensive catalyst. Characterization using nuclear magnetic resonance confirms the successful incorporation of the furan ring and the retention of the terminal double bond of the citronellol pendant chain. Furthermore, under UV irradiation, the presence of both citronellol and furanic moieties induces singular structural changes, triggering the formation of three distinct structures within the polymer network, a phenomenon herein occurs for the first time in this type of polymer. These findings pave the way to new functional materials prepared from renewable monomers with tunable properties.


Assuntos
Monoterpenos Acíclicos , Compostos Bicíclicos Heterocíclicos com Pontes , Furaldeído/análogos & derivados , Glucose/análogos & derivados , Cimento de Policarboxilato , Polímeros , Polímeros/química
3.
Chem Sci ; 14(47): 13962-13978, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38075651

RESUMO

Sinapoyl malate, naturally present in plants, has proved to be an exceptional UV filter and molecular heater for plants. Although there are nowadays industrially relevant sustainable synthetic routes to sinapoyl malate, its incorporation into certain cosmetic formulations, as well as its adsorption on plant leaves, is limited by its hydrophilicity. To overcome these obstacles, it is important to find a way to effectively control the hydrophilic-lipophilic balance of sinapoyl malate to make it readily compatible with the cosmetic formulations and stick on the waxy cuticle of leaves. To this end, herein, we describe a highly regioselective chemo-enzymatic synthesis of sinapoyl malate analogues possessing fatty aliphatic chains of variable length, enabling the lipophilicity of the compounds to be modulated. The potential toxicity (i.e., mutagenicity, carcinogenicity, endocrine disruption, acute and repeated-dose toxicity), bioaccumulation, persistence and biodegradability potential of these new analogues were evaluated in silico, along with the study of their transient absorption spectroscopy, their photostability as well as their photodegradation products.

4.
Polymers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631964

RESUMO

Recently, a renewable five-membered lactone containing citronellol (HBO-citro) was synthesized from levoglucosenone (LGO). A one-pot two-step pathway was then developed to produce a mixture of 5- and 6-membered Lactol-citro molecules (5ML and 6ML, respectively) from HBO-citro. Proton nuclear magnetic resonance (1H NMR) of a mixture of 5ML and 6ML at varying temperatures showed that the chemical shifts of the hydroxyls, as well as the 5ML:6ML ratio, are temperature-dependent. Indeed, a high temperature, such as 65 °C, led to an up-field shielding of the hydroxyl protons as well as a drop in the 5ML:6ML ratio. The monomers 5ML and 6ML were then engaged in polycondensation reactions involving diacyl chlorides. Renewable copolyesters with low glass transition temperatures (as low as -67 °C) and cross-linked citronellol chains were prepared. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG). A higher degradation rate was found for the polymers prepared using Lactol-citro molecules, compared to those obtained by the polycondensation reactions of diacyl chlorides with Triol-citro-a monomer recently obtained by the selective reduction of HBO-citro.

5.
Molecules ; 26(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946753

RESUMO

Levoglucosenone (LGO) is a cellulose-derived molecule that is present commercially on a multi-ton/year scale. Taking advantage of the α,ß-conjugated ketone of LGO, a new citronellol-containing 5-membered lactone (HBO-citro) was synthesized through a one-pot two-step pathway involving oxa-Michael addition and Baeyer-Villiger oxidation. The solvent-free treatment of HBO-citro with NaBH4 at room temperature led to the full reduction of the lactone moiety which gave a novel fully renewable triol monomer having a citronellol side chain (Triol-citro). Noticeably, by simply changing the reducing agent, temperature and reaction duration, the partial reduction of HBO-citro can be achieved to yield a mixture of 5- and 6-membered Lactol-citro molecules. Triol-citro was chosen to prepare functional renewable polyesters having citronellol pendant chains via polycondensation reactions with diacyl chlorides having different chain lengths. Good thermal stability (Td5% up to 170 °C) and low glass transition temperatures (as low as -42 °C) were registered for the polyesters obtained. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG) to assess their biodegradability. A higher degradation profile was found for the polyesters prepared using co-monomers (acyl chlorides) having longer chain lengths. This is likely due to the decreased steric hindrance around the ester bonds which allowed enhanced accessibility of the enzyme.


Assuntos
Monoterpenos Acíclicos/metabolismo , Celulose/metabolismo , Lipase/metabolismo , Poliésteres/metabolismo , Monoterpenos Acíclicos/química , Biodegradação Ambiental , Celulose/química , Eurotiales/enzimologia , Lipase/química , Estrutura Molecular , Poliésteres/síntese química , Poliésteres/química , Temperatura
6.
Macromol Rapid Commun ; 42(19): e2100284, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34347323

RESUMO

The homopolymerization in basic conditions of the recently reported bis(γ-lactone), 2H-HBO-HBO, is herein described for the first time. The solvent-free polymerization of this pentafunctional levoglucosenone (LGO) derivative affords fully renewable poly(vinyl-ether lactone) copolymers with a highly hyperbranched structure. This investigation stems from the polycondensation trials between 2H-HBO-HBO and di(methyl carbonate) isosorbide (DCI) that fails to give the anticipated polycarbonates. Such unexpected behavior is ascribed to the higher reactivity of the 2H-HBO-HBO hydroxy groups toward its α,ß-conjugated endocyclic C═C, rather than the DCI methylcarbonate moieties. The different mechanistic scenarios involved in 2H-HBO-HBO homopolymerization are addressed and a possible structure of poly(2H-HBO-HBO) is suggested. Furthermore, the readily accessible (S)-γ-hydroxymethyl-α,ß-butenolide (HBO) is also polymerized for the first time at a relatively large scale, without any prior modification, resulting in a new hyperbranched polymer with an environmental factor (E factor) ≈0. These new HBO-based polymers have a great potential for industrial-scale production due to their interesting properties and easy preparation via a low-cost, green, and efficient process.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Glucose/análogos & derivados , Substâncias Macromoleculares , Polimerização
7.
J Agric Food Chem ; 68(26): 6998-7004, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484692

RESUMO

Naturally occurring sinapine was successfully synthesized through a proline-mediated Knoevenagel-Doebner condensation in ethanol. This synthetic process involving biobased syringaldehyde, Meldrum's acid, and choline chloride offers a sustainable alternative to the existing low-yield pathways. This two-step strategy gives access to sinapine in a 52% overall yield and has been implemented in the synthesis of sinapine analogues, using 4-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, and vanillin as precursors, giving target molecules with 34-61% overall isolated yields. The purity of synthetic sinapine and its analogues (ca. 95%) was assessed by NMR and high-performance liquid chromatography-mass spectrometry analyses. Furthermore, the antioxidant and antimicrobial activities were assessed, and the potential of this series of molecules was confirmed.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Colina/análogos & derivados , Antibacterianos/química , Antioxidantes/química , Colina/síntese química , Colina/química , Colina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Estrutura Molecular
8.
Front Chem ; 7: 842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921767

RESUMO

To investigate lignin degradation, scientists commonly use model compounds. Unfortunately, these models are most of the time simple ß-O-4 dimers and do not sufficiently mimic the wide complexity of lignin structure (i.e., aliphatic side chains and robust C-C bonds). Herein, we present a methodology to access advanced lignin models through the first synthesis of two trimers of monolignol G-possessing side-chains and both robust ß-5 bond and labile ß-O-4 bond-via a chemo-enzymatic pathway. Key steps were (1) the C-C coupling via laccase-mediated oxidation, (2) the C-O coupling via a simple SN2 between a phenolate and a bromoketoester, and (3) a modified Upjohn dihydroxylation or a palladium-catalyzed hydrogenation. (ß-5)-(ß-O-4) dihydroxytrimer and dihydrotrimer of coniferyl alcohol (G) were obtained in good global yield, 9 and 20%, respectively, over nine steps starting from ferulic acid.

9.
Molecules ; 21(8)2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27483225

RESUMO

Chiral epoxides-such as ethyl and methyl (S)-3-(oxiran-2-yl)propanoates ((S)-1a/1b)-are valuable precursors in many chemical syntheses. Until recently, these compounds were synthesized from glutamic acid in four steps (deamination, reduction, tosylation and epoxide formation) in low to moderate overall yield (20%-50%). Moreover, this procedure requires some harmful reagents such as sodium nitrite ((eco)toxic) and borane (carcinogen). Herein, starting from levoglucosenone (LGO), a biobased chiral compound obtained through the flash pyrolysis of acidified cellulose, we propose a safer and more sustainable chemo-enzymatic synthetic pathway involving lipase-mediated Baeyer-Villiger oxidation, palladium-catalyzed hydrogenation, tosylation and treatment with sodium ethoxide/methoxide as key steps. This route afforded ethyl and methyl (S)-3-(oxiran-2-yl)propanoates in 57% overall yield, respectively. To demonstrate the potentiality of this new synthetic pathway from LGO, the synthesis of high value-added (S)-dairy lactone was undertaken from these epoxides and provided the target in 37% overall yield from LGO.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos de Epóxi , Glucose/análogos & derivados , Lactonas/química , Propionatos , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Glucose/química , Propionatos/síntese química , Propionatos/química
10.
Front Chem ; 4: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148523

RESUMO

Cellulose-derived levoglucosenone (LGO) has been efficiently converted into pure (S)-γ-hydroxymethyl-α,ß-butenolide (HBO), a chemical platform suited for the synthesis of drugs, flavors and antiviral agents. This process involves two-steps: a lipase-catalyzed Baeyer-Villiger oxidation of LGO followed by an acid hydrolysis of the reaction mixture to provide pure HBO. Response surface methodology (RSM), based on central composite face-centered (CCF) design, was employed to evaluate the factors effecting the enzyme-catalyzed reaction: pka of solid buffer (7.2-9.6), LGO concentration (0.5-1 M) and enzyme loading (55-285 PLU.mmol(-1)). Enzyme loading and pka of solid buffer were found to be important factors to the reaction efficiency (as measured by the conversion of LGO) while only the later had significant effects on the enzyme recyclability (as measured by the enzyme residual activity). LGO concentration influences both responses by its interaction with the enzyme loading and pka of solid buffer. The optimal conditions which allow to convert at least 80% of LGO in 2 h at 40°C and reuse the enzyme for a subsequent cycle were found to be: solid buffer pka = 7.5, [LGO] = 0.50 M and 113 PLU.mmol(-1) for the lipase. A good agreement between experimental and predicted values was obtained and the model validity confirmed (p < 0.05). Alternative optimal conditions were explored using Monte Carlo simulations for risk analysis, being estimated the experimental region where the LGO conversion higher than 80% is fulfilled at a specific risk of failure.

12.
Bioorg Med Chem Lett ; 26(9): 2318-23, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26996374

RESUMO

We report the discovery and optimisation of a series of 8-(2,3-dihydro-1,4-benzoxazin-4-ylmethyl)-2-morpholino-4-oxo-chromene-6-carboxamides, leading to compound 16 as a potent and selective PI3Kß/δ inhibitor: PI3Kß cell IC50 0.012 µM (in PTEN null MDA-MB-468 cell) and PI3Kδ cell IC50 0.047 µM (in Jeko-1 B-cell), with good pharmacokinetics and physical properties. In vivo, 16 showed profound pharmacodynamic modulation of AKT phosphorylation in a mouse PTEN-deficient PC3 prostate tumour xenograft after a single oral dose and gave excellent tumour growth inhibition in the same model after chronic oral dosing. Compound 16 was selected as a preclinical candidate for the treatment of PTEN-deficient tumours.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Morfolinos/química , Morfolinos/farmacologia , PTEN Fosfo-Hidrolase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Fosforilação
13.
J Med Chem ; 58(8): 3522-33, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25790336

RESUMO

A novel estrogen receptor down-regulator, 7-hydroxycoumarin (5, SS5020), has been reported with antitumor effects against chemically induced mammary tumors. Here, we report on our own investigation of 7-hydroxycoumarins as potential selective estrogen receptor down-regulators, which led us to the discovery of potent down-regulating antagonists, such as 33. Subsequent optimization and removal of the 7-hydroxy group led to coumarin 59, which had increased potency and improved rat bioavailability relative to SS5020.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Umbeliferonas/química , Umbeliferonas/farmacologia , Administração Oral , Animais , Linhagem Celular Tumoral , Cumarínicos/química , Cumarínicos/farmacocinética , Cumarínicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/análise , Humanos , Simulação de Acoplamento Molecular , Ratos , Umbeliferonas/farmacocinética
14.
J Med Chem ; 58(2): 943-62, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25514658

RESUMO

Several studies have highlighted the dependency of PTEN deficient tumors to PI3Kß activity and specific inhibition of PI3Kδ has been shown activity against human B-cell cancers. We describe the discovery and optimization of a series of 8-(1-anilino)ethyl)-2-morpholino-4-oxo-4H-chromene-6-carboxamides as PI3Kß/δ inhibitors, which led to the discovery of the clinical candidate 13, also known as AZD8186. On the basis of the lower lipophilicity of the chromen-4-one core compared to the previously utilized pyrido[1,2-a]pyrimid-4-one core, this series of compounds displayed high metabolic stability and suitable physical properties for oral administration. Compound 13 showed profound pharmacodynamic modulation of p-Akt in PTEN-deficient PC3 prostate tumor bearing mice after oral administration and showed complete inhibition of tumor growth in the mouse PTEN-deficient PC3 prostate tumor xenograft model. 13 was selected as a clinical candidate for treatment of PTEN-deficient cancers and has recently entered phase I clinical trials.


Assuntos
Compostos de Anilina/síntese química , Cromonas/síntese química , Neoplasias Experimentais/tratamento farmacológico , PTEN Fosfo-Hidrolase/deficiência , Inibidores de Fosfoinositídeo-3 Quinase , Compostos de Anilina/farmacologia , Animais , Cromonas/farmacologia , Cães , Descoberta de Drogas , Humanos , Masculino , Camundongos , Neoplasias Experimentais/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...