Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 168: 43-52, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34619597

RESUMO

Gibberellin has been proposed to increase leaf elongation in radish (Raphanus sativus L.) plants, which is associated with decreased tuber growth. Since light intensity can control growth through interaction with gibberellin, investigation of the effect of gibberellin levels on the growth of radish plants would be a step forward towards unraveling factors that underlie biomass accumulation and allocation in response to irradiance levels. Here, we report that the gibberellin biosynthesis inhibitor paclobutrazol (PAC) decreased petiole elongation, but not lamina growth of radish plants grown under full sunlight. However, shading promoted an increase in shoot elongation, while in plants treated with PAC the petiole and leaf lamina fail to elongate. Plants treated with PAC allocated proportionally more biomass to their tubers and less to shoot compared to control under shade. Moreover, PAC decreased the abundance of transcripts encoding cell wall expansion proteins in leaf lamina and petiole of plants grown under shade, which was positively correlated with sugar consumption by the tuber, thereby increasing the mass fraction and concentrations of minerals for tuber. Thus, allocation of biomass during the growth of radish plants and nutritional quality of tubers depend on gibberellin and light intensity.


Assuntos
Raphanus , Biomassa , Giberelinas , Luz , Folhas de Planta
2.
Plant Physiol Biochem ; 130: 399-407, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30064096

RESUMO

In Stylosanthes humilis, salt stress tolerance is associated with ethylene production by the seeds, however, how salt stress controls seed germination and ethylene production is poorly understood. Here, we studied the hormonal and metabolic changes triggered by salt stress on germination of S. humilis seeds. Salt stress led to decreased seed germination and ethylene production, concomitantly with higher abscisic acid (ABA) production by seeds. Treatment with NaCl and ABA promoted distinct changes in energy metabolism, allowing seeds to adapt to salt stress conditions. Treatment with the ABA biosynthesis inhibitor fluridone or ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) reversed the effects of salt stress on seed germination and ethylene production. Moreover, ethylene concentration was decreased by increasing the pH of the salt solution. High pH, however, did not influence concentration of ABA in seeds under salt stress. We conclude that biosynthesis of ABA and ethylene in response to salt stress constitutes a point of convergence that provides flexibility to regulate energy metabolism and embryo growth potential of S. humilis seeds within a given pH condition.


Assuntos
Ácido Abscísico/metabolismo , Etilenos/metabolismo , Fabaceae/metabolismo , Germinação , Reguladores de Crescimento de Plantas/metabolismo , Sementes/metabolismo , Fabaceae/fisiologia , Germinação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Tolerância ao Sal , Sementes/efeitos dos fármacos
3.
An Acad Bras Cienc ; 90(2): 1625-1641, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29898112

RESUMO

The physical, physiological and biochemical changes during the development until the dispersal of rubber tree seeds were evaluated with the purpose of estimating the point at physiological maturity. A total of 30 plants were selected at different points in a commercial planting area and had their flowers marked during the anthesis and every 15 days after marking. Fruits and seeds were collected for analysis of moisture content, dry matter, diameter and length. Details of the anatomy ultra-structure of the seeds were evaluated. The seed emergence, emergency speed index, heat resistant proteins and oxidative stress enzymes were examined. It was observed that fruits reached maximum size at 120 days after anthesis and seeds at 150 days. The seeds acquired germination capacity after 150 days. At 175 days, they presented the highest percentage of dry matter and lowest moisture, in addition to a higher percentage of germination and vigor. Therefore, it was possible to conclude that the physiological maturity of the rubber tree seeds occurs at 175 days after anthesis, and coincides with its maximum physiological quality. At 175 and 180 days post-anthesis, there is a greater expression of heat resistant proteins as well as low molecular weight and greater oxidative stress enzyme activity.


Assuntos
Frutas/fisiologia , Hevea/fisiologia , Sementes/fisiologia , Brasil , Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Germinação/fisiologia , Proteínas de Choque Térmico/metabolismo , Hevea/anatomia & histologia , Hevea/crescimento & desenvolvimento , Hevea/metabolismo , Peso Molecular , Estresse Oxidativo , Plântula/fisiologia , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA